
For Use with MATLAB®

User’s Guide
Version 2

Distributed Computing
Toolbox

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Distributed Computing Toolbox User’s Guide
© COPYRIGHT 2004–2006 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox are
registered trademarks of The MathWorks, Inc.
Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents
The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History

November 2004 Online only New for Version 1.0 (Release 14SP1+)
March 2005 Online only Revised for Version 1.0.1 (Release 14SP2)
September 2005 Online only Revised for Version 1.0.2 (Release 14SP3)
November 2005 Online only Revised for Version 2.0 (Release 14SP3+)
March 2006 Online only Revised for Version 2.0.1 (Release 2006a)

Contents
1
Getting Started

What Are the Distributed Computing Products? 1-2
Determining Product Installation and Versions 1-3

Toolbox and Engine Components . 1-4
Job Managers, Workers, and Clients . 1-4
Third-Party Schedulers . 1-5
Components on Mixed Platforms or Heterogeneous Clusters . 1-7
The MATLAB Distributed Computing Engine Service 1-7
Components Represented in the Client 1-7

Using the Distributed Computing Toolbox 1-8
Overview . 1-8
Example: Programming a Basic Job with a Job Manager 1-8
Example: Evaluating a Basic Function 1-9
Example: Programming a Basic Job with an LSF Scheduler . 1-10

Getting Help . 1-12
Command-Line Help . 1-12
Help Browser . 1-13

2

Programming Distributed and Parallel
Applications

Program Development Guidelines . 2-2

Life Cycle of a Job . 2-3

Evaluating Functions in a Cluster . 2-5
Evaluating Functions Synchronously . 2-5
Evaluating Functions Asynchronously 2-7
i

ii Contents
Programming Distributed Jobs . 2-9
Using a Job Manager . 2-9
Using an LSF Scheduler . 2-19
Using a Generic Scheduler . 2-27

Programming Parallel Jobs . 2-37
Using a Job Manager . 2-38
Using an mpiexec Scheduler . 2-40
Further Notes on Parallel Jobs . 2-43

Programming with User Configurations 2-44
Defining Configurations . 2-44
Applying Configurations in Client Code 2-45

Programming Tips and Notes . 2-48
Saving or Sending Objects . 2-48
Current Working Directory of MATLAB Worker 2-48
Using clear functions . 2-48
Running Tasks That Call Simulink . 2-49
Using the pause Function . 2-49
Transmitting Large Amounts of Data 2-49
Interrupting a Job . 2-49
IPv6 on Macintosh . 2-49
Speeding Up a Job . 2-50

Troubleshooting and Debugging . 2-51
Object Data Size Limitations . 2-51
File Access and Permissions . 2-53
No Results from Job . 2-54
Connection Problems Between Client and Job Manager 2-55

3
Function Reference

Functions — By Category . 3-2
General Toolbox Functions . 3-2
Job Manager Functions . 3-3
Scheduler Functions . 3-3
Job Functions . 3-4
Task Functions . 3-4
Toolbox Functions Used in Parallel Jobs 3-4
Toolbox Functions Used in MATLAB Workers 3-5

Functions — Alphabetical List . 3-6

4
Property Reference

Properties — By Category . 4-2
Job Manager Properties . 4-2
Scheduler Properties . 4-2
Job Properties . 4-3
Task Properties . 4-4
Worker Properties . 4-5

Properties — Alphabetical List . 4-7

Glossary

Index
iii

iv Contents

1

Getting Started

This chapter provides information you need to get started with the Distributed Computing Toolbox
and the MATLAB® Distributed Computing Engine. The sections are as follows.

What Are the Distributed Computing
Products? (p. 1-2)

Overview of the Distributed Computing Toolbox and the
MATLAB Distributed Computing Engine, and their
capabilities

Toolbox and Engine Components
(p. 1-4)

Descriptions of the parts and configurations of a
distributed computing setup

Using the Distributed Computing
Toolbox (p. 1-8)

Introduction to Distributed Computing Toolbox
programming with a basic example

Getting Help (p. 1-12) Explanation of how to get help on toolbox functions

1 Getting Started

1-2
What Are the Distributed Computing Products?
The Distributed Computing Toolbox and the MATLAB Distributed Computing
Engine enable you to coordinate and execute independent MATLAB operations
simultaneously on a cluster of computers, speeding up execution of large
MATLAB jobs.

A job is some large operation that you need to perform in your MATLAB
session. A job is broken down into segments called tasks. You decide how best
to divide your job into tasks. You could divide your job into identical tasks, but
tasks do not have to be identical.

The MATLAB session in which the job and its tasks are defined is called the
client session. Often, this is on the machine where you program MATLAB. The
client uses the Distributed Computing Toolbox to perform the definition of jobs
and tasks. The MATLAB Distributed Computing Engine is the product that
performs the execution of your job by evaluating each of its tasks and returning
the result to your client session.

The job manager is the part of the engine that coordinates the execution of jobs
and the evaluation of their tasks. The job manager distributes the tasks for
evaluation to the engine’s individual MATLAB sessions called workers. Use of
the MathWorks job manager is optional; the distribution of tasks to workers
can also be performed by a third-party scheduler, such as LSF.

See the “Glossary” for definitions of the distributed computing terms used in
this manual.

What Are the Distributed Computing Products?
Basic Distributed Computing Configuration

Determining Product Installation and Versions
To determine if the Distributed Computing Toolbox is installed on your system,
type this command at the MATLAB prompt.

ver

When you enter this command, MATLAB displays information about the
version of MATLAB you are running, including a list of all toolboxes installed
on your system and their version numbers.

You can run the ver command as part of a task in a distributed application to
determine what version of the MATLAB Distributed Computing Engine is
installed on a worker machine. Note that the toolbox and engine must be the
same version.

��������	
��

�������

	

�	��������

�������������
���������	

��
������

�������

����������������	

��
������������	

��������	
��

����������������	

��
������������	

��������	
��

����������������	

��
������������	
1-3

1 Getting Started

1-4
Toolbox and Engine Components

Job Managers, Workers, and Clients
The job manager can be run on any machine on the network. The job manager
runs jobs in the order in which they are submitted, unless any jobs in its queue
are promoted, demoted, canceled, or destroyed.

Each worker is given a task from the running job by the job manager, executes
the task, returns the result to the job manager, and then is given another task.
When all tasks for a running job have been assigned to workers, the job
manager starts running the next job with the next available worker.

A MATLAB Distributed Computing Engine setup usually includes many
workers that can all execute tasks simultaneously, speeding up execution of
large MATLAB jobs. It is generally not important which worker executes a
specific task. The workers evaluate tasks one at a time, returning the results
to the job manager. The job manager then returns the results of all the tasks
in the job to the client session.

Note For testing your application locally or other purposes, you can configure
a single computer as client, worker, and job manager. You can also have more
than one worker session or more than one job manager session on a machine.

Interactions of Distributed Computing Sessions

�	
��

�������

	

�	��������

������

�	
��

�	
��

������

�	�

�����������

�	�

�����������

����

�������

����

�������

����

�������

Toolbox and Engine Components
A large network might include several job managers as well as several client
sessions. Any client session can create, run, and access jobs on any job
manager, but a worker session is registered with and dedicated to only one job
manager at a time. The following figure shows a configuration with multiple
job managers.

Configuration with Multiple Clients and Job Managers

Third-Party Schedulers
As an alternative to using the MathWorks job manager, you can use a
third-party scheduler. This could be a Platform Computing LSF scheduler, an
mpiexec scheduler, or a generic scheduler.

Choosing between a Scheduler and Job Manager
You should consider the following when deciding to use a scheduler or the
MathWorks job manager for distributing your tasks:

• Does your cluster already have a scheduler?

If you already have a scheduler, you may be required to use it as a means of
controlling access to the cluster. Your existing scheduler might be just as
easy to use as a job manager, so there might be no need for the extra
administration involved.

������

�	
��

�	
��

�	
��

������

�������

	

�	��������

�	
��

�	
��

�	
��

������

������

�������

	

�	��������

1-5

1 Getting Started

1-6
• Is the handling of distributed computing jobs the only cluster scheduling
management you need?

The MathWorks job manager is designed specifically for MathWorks
distributed computing applications. If other scheduling tasks are not needed,
a third-party scheduler might not offer any advantages.

• Is there a file sharing configuration on your cluster already?

The MathWorks job manager can handle all file and data sharing necessary
for your distributed computing applications. This might be helpful in
configurations where shared access is limited.

• Are you interested in batch mode or managed interactive processing?

When you use a job manager, worker processes usually remain running at
all times, dedicated to their job manager. With a third-party scheduler,
workers are run as applications that are started for the evaluation of tasks,
and stopped when their tasks are complete. If tasks are small or take little
time, starting a worker for each one might involve too much overhead time.

• Are there security concerns?

Your own scheduler may be configured to accommodate your particular
security requirements.

• How many nodes are on your cluster?

If you have a large cluster, you probably already have a scheduler. Consult
your MathWorks representative if you have questions about cluster size and
the job manager.

• Who administers your cluster?

The person administering your cluster might have a preference for how jobs
are scheduled.

• Do you need to monitor your job’s progress or access intermediate data?

A job run by the job manager supports events and callbacks, so that
particular functions can run as each job and task progresses from one state
to another.

Toolbox and Engine Components
Components on Mixed Platforms or Heterogeneous
Clusters
The Distributed Computing Toolbox and MATLAB Distributed Computing
Engine are supported on Windows, UNIX, and Macintosh platforms. Mixed
platforms are supported, so that the clients, job managers, and workers do not
have to be on the same platform. The cluster can also be comprised of both
32-bit and 64-bit machines, so long as your data does not exceed the limitations
posed by the 32-bit systems.

In a mixed-platform environment, system administrators should be sure to
follow the proper installation instructions for the local machine on which you
are installing the software.

The MATLAB Distributed Computing Engine Service
If you are using the MathWorks job manager, every machine that hosts a
worker or job manager session must also run the MATLAB Distributed
Computing Engine (mdce) service.

The mdce service controls the worker and job manager sessions and recovers
them when their host machines crash. If a worker or job manager machine
crashes, when the mdce service starts up again (usually configured to start at
machine boot time), it automatically restarts the job manager and worker
sessions to resume their sessions from before the system crash. These
processes are covered more fully in the MATLAB Distributed Computing
Engine System Administrator’s Guide.

Components Represented in the Client
A client session communicates with the job manager by calling methods and
configuring properties of a job manager object. Though not often necessary, the
client session can also access information about a worker session through a
worker object.

When you create a job in the client session, the job actually exists in the job
manager or in the scheduler’s data location. The client session has access to the
job through a job object. Likewise, tasks that you define for a job in the client
session exist in the job manager or in the scheduler’s data location, and you
access them through task objects.
1-7

1 Getting Started

1-8
Using the Distributed Computing Toolbox

Overview
A typical Distributed Computing Toolbox client session includes the following
steps. Details of each step appear in “Creating and Running Jobs” on page 2-9.
A basic example follows in the next section.

1 Find a Job Manager (or scheduler) — Your network may have one or more
job managers available (but usually only one scheduler). The function you
use to find a job manager or scheduler creates an object in your current
MATLAB session to represent the job manager or scheduler that will run
your job.

2 Create a Job — You create a job to hold a collection of tasks. The job exists
on the job manager (or scheduler’s data location), but a job object in the local
MATLAB session represents that job.

3 Create Tasks — You create tasks to add to the job. Each task of a job can be
represented by a task object in your local MATLAB session.

4 Submit a Job to the Job Queue for Execution — When your job has all its
tasks defined, you submit it to the queue in the job manager or scheduler.
The job manager or scheduler distributes your job’s tasks to the worker
sessions for evaluation. When all of the workers are completed with the job’s
tasks, the job moves to the finished state.

5 Retrieve the Job’s Results — The resulting data from the evaluation of the
job is available as a property value of each task object.

6 Destroy the Job — When a job is complete and you have its results, you
might want to permanently remove the job from the job manager. Once a job
is destroyed, its data is gone forever.

Example: Programming a Basic Job with a Job
Manager
This example illustrates the basic steps in creating and running a job that
contains a few simple tasks. Each task performs a sum on an input array.

Using the Distributed Computing Toolbox
1 Find a job manager. Use findResource to locate a job manager and create
the job manager object jm, which represents the job manager in the cluster
whose name is MyJobManager running on the host JobMgrHost.

jm = findResource('scheduler','type','jobmanager', ...
 'name','MyJobManager','LookupURL','JobMgrHost');

2 Create a job. Create job j on the job manager.

j = createJob(jm);

3 Create tasks. Create three tasks on the job j. Each task evaluates the sum of
the array that is passed as an input argument.

createTask(j, @sum, 1, {[1 1]});
createTask(j, @sum, 1, {[2 2]});
createTask(j, @sum, 1, {[3 3]});

4 Submit the job to the queue. The job manager moves the job into the queue
to be executed when workers are available.

submit(j);

5 Retrieve results. Wait for the job to complete, then get the results from all
the job’s tasks.

waitForState(j)
results = getAllOutputArguments(j)
results =
 [2]
 [4]
 [6]

6 Destroy the job. When you have the results, you can permanently remove
the job from the job manager.

destroy(j)

Example: Evaluating a Basic Function
The dfeval function allows you to evaluate a function in a cluster of workers
without having to define jobs and tasks yourself. When you can divide your job
into similar tasks, using dfeval might be an appropriate way to run your job.
Your cluster must use a MathWorks job manager for dfeval to work.
1-9

1 Getting Started

1-1
results = dfeval(@sum, {[1 1] [2 2] [3 3]})
results =
 [2]
 [4]
 [6]

This example runs the job as three tasks in the same way the previous example
does.

For more information about dfeval and in what circumstances you can use it,
see “Evaluating Functions in a Cluster” on page 2-5.

Example: Programming a Basic Job with an LSF
Scheduler
This example illustrates the basic steps in creating and running a job by using
a third-party scheduler instead of a MathWorks job manager. Each task
performs a sum on an input array.

1 Find a scheduler. Use findResource to locate a scheduler and create the
scheduler object sched, which represents your cluster’s LSF scheduler.

sched = findResource('scheduler','type','LSF');

2 Create a job. Create job j on the scheduler.

j = createJob(sched);

3 Create tasks. Create three tasks on the job j. Each task evaluates the sum of
the array that is passed as an input argument.

createTask(j, @sum, 1, {[1 1]});
createTask(j, @sum, 1, {[2 2]});
createTask(j, @sum, 1, {[3 3]});

4 Submit the job to the queue. The scheduler moves the job into the queue to
be executed when nodes are available.

submit(j);

5 Retrieve results. Wait for the job to complete, then get the results from all
the job’s tasks.

waitForState(j)
0

Using the Distributed Computing Toolbox
results = getAllOutputArguments(j)
results =
 [2]
 [4]
 [6]

6 Destroy the job. When you have the results, you can permanently remove
the job from the scheduler’s data location.

destroy(j)
1-11

1 Getting Started

1-1
Getting Help

Command-Line Help
You can get command-line help on the object functions in the Distributed
Computing Toolbox by using the syntax

help distcomp.objectType/functionName

For example, to get command-line help on the createTask function, type

help distcomp.job/createTask

The available choices for objectType are jobmanager, job, and task.

Listing Available Functions
To find the functions available for each type of object, type

methods(obj)

where obj is an object of one of the available types.

For example, to see the functions available for job manager objects, type

jm = findResource('jobmanager');
methods(jm)

To see the functions available for job objects, type

job1 = createJob(jm)
methods(job1)

To see the functions available for task objects, type

task1 = createTask(job1,1,@rand,{3})
methods(task1)
2

Getting Help
Help Browser
You can open the Help browser with the doc command. To open the browser on
a specific reference page for a function or property, type

doc distcomp/RefName

where RefName is the name of the function or property whose reference page
you want to read.

For example, to open the Help browser on the reference page for the createJob
function, type

doc distcomp/createjob

To open the Help browser on the reference page for the UserData property,
type

doc distcomp/userdata

Note The property or function name must be entered with lowercase letters,
even though function names are case sensitive in other situations.
1-13

1 Getting Started

1-1
4

2

Programming Distributed
and Parallel Applications

This chapter provides information you need for programming with the Distributed Computing
Toolbox to define and run jobs. The sections are as follows.

Program Development Guidelines
(p. 2-2)

Suggested method for program development

Life Cycle of a Job (p. 2-3) Stages of a job from creation to completion

Evaluating Functions in a Cluster
(p. 2-5)

How to run a job without having to program scheduler,
job, and task objects

Programming Distributed Jobs (p. 2-9) How to create a distributed job and run it on the
MATLAB Distributed Computing Engine with a job
manager or a third-party scheduler

Programming Parallel Jobs (p. 2-37) How to create a parallel job and run it on the MATLAB
Distributed Computing Engine with a job manager or an
mpiexec scheduler

Programming with User
Configurations (p. 2-44)

How to employ configurations for parameters and
properties in your program

Programming Tips and Notes (p. 2-48) Provides helpful hints for good programming practice

Troubleshooting and Debugging
(p. 2-51)

Describes common programming errors and how to avoid
them

2 Programming Distributed and Parallel Applications

2-2
Program Development Guidelines
When writing code for the Distributed Computing Toolbox, you should advance
one step at a time in the complexity of your application. Verifying your program
at each step prevents your having to debug several potential problems
simultaneously. If you run into any problems at any step along the way, back
up to the previous step and reverify your code.

The recommended programming practice for distributed computing
applications is

1 Run code normally on your local machine. First verify your functions so
that as you progress, you are not trying to debug the functions and the
distribution at the same time. Run your functions in a single instance of
MATLAB on your local computer.

2 Run code distributed to only one node, where that node is likely the local
computer running a MATLAB worker in addition to your MATLAB client.
Create a job and task to verify that the function is working in a distributed
computing model.

3 Distribute the code to two nodes. Expand your job to include two tasks,
preferably executed on two different workers on different computers.

4 Distribute the code to N nodes. Scale up your job to include as many tasks
as you need.

Note The client session of MATLAB must be running the Java Virtual
Machine (JVM) to use the Distributed Computing Toolbox. Do not start
MATLAB with the -nojvm flag.

Life Cycle of a Job
Life Cycle of a Job
When you create and run a job, it progresses through a number of stages. Each
stage of a job is reflected in the value of the job object’s State property, which
can be pending, queued, running, or finished. Each of these stages is briefly
described in this section.

The figure below illustrated the stages in the life cycle of a job. In the job
manager, the jobs are shown categorized by their state. Some of the functions
you use for managing a job are createJob, submit, and
getAllOutputArguments.

Stages of a Job

The following table describes each stage in the life cycle of a job.

��������	

����

��	��	

��	��	

��	��	

���
���

���
���

���
���
���

���

���

���

���
���
���

���

��������	

�	�
�

�������

�	�	��
	�����

�����
��

��������������������

��	��	

��	��	
2-3

2 Programming Distributed and Parallel Applications

2-4
Note that when a job is finished, it remains in the job manager or
DataLocation directory, even if you clear all the objects from the client session.
The job manager or scheduler keeps all the jobs it has executed, until you
restart the job manager in a clean state. Therefore, you can retrieve
information from a job at a later time or in another client session, so long as the
job manager has not been restarted with the -clean option.

To permanently remove completed jobs from the job manager or scheduler’s
data location, use the destroy function.

Job Stage Description

Pending You create a job on the scheduler with the createJob
function in your client session of the Distributed Computing
Toolbox. The job’s first state is pending. This is when you
define the job by adding tasks to it.

Queued When you execute the submit function on a job, the scheduler
places the job in the queue, and the job’s state is queued. The
scheduler executes jobs in the queue in the sequence in which
they are submitted, all jobs moving up the queue as the jobs
before them are finished. You can change the order of the jobs
in the queue with the promote and demote functions.

Running When a job reaches the top of the queue, the scheduler
distributes the job’s tasks to worker sessions for evaluation.
The job’s state is running. If more workers are available than
necessary for a job’s tasks, the scheduler begins executing the
next job. In this way, there can be more than one job running
at a time.

Finished When all of a job’s tasks have been evaluated, a job is moved
to the finished state. At this time, you can retrieve the
results from all the tasks in the job with the function
getAllOutputArguments.

Evaluating Functions in a Cluster
Evaluating Functions in a Cluster
In many cases, the tasks of a job are all the same, or there are a limited number
of different kinds of tasks in a job. The Distributed Computing Toolbox offers a
solution for these cases that alleviates you from having to define individual
tasks and jobs when evaluating a function in a cluster of workers. The two ways
of evaluating a function on a cluster are described in the following sections:

• “Evaluating Functions Synchronously” on page 2-5

• “Evaluating Functions Asynchronously” on page 2-7

Evaluating Functions Synchronously
When you evaluate a function in a cluster of computers with dfeval, you
provide basic required information, such as the function to be evaluated, the
number of tasks to divide the job into, and the variable into which the results
are returned. Synchronous evaluation in a cluster means that MATLAB is
blocked until the evaluation is complete and the results are assigned to the
designated variable. So you provide the necessary information, while the
Distributed Computing Toolbox handles all the job-related aspects of the
function evaluation.

When executing the dfeval function, the toolbox performs all these steps of
running a job:

1 Finds a job manager

2 Creates a job

3 Creates tasks in that job

4 Submits the job to the queue in the job manager

5 Retrieves the results from the job

6 Destroys the job
2-5

2 Programming Distributed and Parallel Applications

2-6
Scope of dfeval
By allowing the system to perform all the steps for creating and running jobs
with a single function call, you do not have access to the full flexibility offered
by the Distributed Computing Toolbox. However, this narrow functionality
meets the requirements of many straightforward applications. To focus the
scope of dfeval, the following limitations apply:

• You can pass property values to the job object, but you cannot set any
task-specific properties, including callback functions

• All the tasks in the job must have the same number of input arguments.

• All the tasks in the job must have the same number of output arguments.

• If you are using a third-party scheduler instead of the job manager, you must
use configurations in your call to dfeval. See “Programming with User
Configurations” on page 2-44, and the reference page for dfeval.

• You do not have direct access to the job manager, job, or task objects, i.e.,
there are no objects in your MATLAB workspace to manipulate (though you
can get them using findResource and the properties of the job manager).
Note that dfevalasync returns a job object.

• Without access to the objects and their properties, you do not have control
over the handling of errors.

Example: Using dfeval
Suppose the function myfun accepts three input arguments, and generates two
output arguments. To run a job with four tasks that call myfun, you could type

[A, B] = dfeval(@myfun, {a b c d}, {e f g h}, {w x y z});

The number of elements of the input argument cell arrays determines the
number of tasks in the job. All input cell arrays must have the same number of
elements. In this example, there are four tasks.

Because myfun returns two arguments, the results of your job will be assigned
to two cell arrays, A and B. These cell arrays will have four elements each, for
the four tasks. The first element of A will have the first output argument from
the first task, the first element of B will have the second argument from the
first task, and so on.

Evaluating Functions in a Cluster
The following table shows how the job is divided into tasks and where the
results are returned.

So using one dfeval line would be equivalent to the following code, except that
dfeval can run all the statements simultaneously on separate machines.

[A{1}, B{1}] = myfun(a,e,w);
[A{2}, B{2}] = myfun(b,f,x);
[A{3}, B{3}] = myfun(c,g,y);
[A{4}, B{4}] = myfun(d,h,z);

For further details and examples of the dfeval function, see the dfeval
reference page.

Evaluating Functions Asynchronously
The dfeval function operates synchronously, that is, it blocks the MATLAB
command line until its execution is complete. If you want to send a job off to the
job manager and get access to the command line while the job is being run
asynchronously, you can use the dfevalasync function.

The dfevalasync function operates in the same way as dfeval, except that it
does not block the MATLAB command line, and it does not directly return
results.

To asynchronously run the example of the previous section, type

Job1 = dfevalasync(@myfun, 2, {a b c d}, {e f g h}, {w x y z});

Note that you have to specify the number of output arguments that each task
will return (2, in this example).

Task Function Call Results

myfun(a,e,w) A{1}, B{1}

myfun(b,f,x) A{2}, B{2}

myfun(c,g,y) A{3}, B{3}

myfun(d,h,z) A{4}, B{4}
2-7

2 Programming Distributed and Parallel Applications

2-8
The MATLAB session does not wait for the job to execute, but returns the
prompt immediately. Instead of assigning results to cell array variables, the
function creates a job object in the MATLAB workspace that you can use to
access job status and results.

You can use the MATLAB session to perform other operations while the job is
being run on the cluster. When you want to get the job’s results, you should
make sure it is finished before retrieving the data.

waitForState(Job1,'finished')
data = getAllOutputArguments(Job1)

The structure of the output arguments is now slightly different than it was for
dfeval. The getAllOutputArguments function returns all output arguments
from all tasks in a single cell array, with one row per task. In this example,
each row of the cell array data will have two elements. So, data{1,1} contains
the first output argument from the first task, data{1,2} contains the second
argument from the first task, and so on.

For further details and examples of the dfevalasync function, see the
dfevalasync reference page.

Programming Distributed Jobs
Programming Distributed Jobs
A distributed job is one whose tasks do not directly communicate with each
other. The tasks do not need to run simultaneously, and a worker might run
several tasks of the same job in succession. Typically, all tasks perform the
same or similar functions on different data sets in an embarrassingly parallel
configuration.

The following sections describe how to program distributed jobs:

• “Using a Job Manager” on page 2-9

• “Using an LSF Scheduler” on page 2-19

• “Using a Generic Scheduler” on page 2-27

Using a Job Manager

Creating and Running Jobs
For jobs that are more complex or require more control than the functionality
offered by dfeval, you have to program all the steps for creating and running
of the job.

This section details the steps of a typical programming session with the
Distributed Computing Toolbox using a MathWorks job manager:

• “Find a Job Manager” on page 2-10

• “Create a Job” on page 2-11

• “Create Tasks” on page 2-12

• “Submit a Job to the Job Queue” on page 2-12

• “Retrieve the Job’s Results” on page 2-13

Note that the objects that the client session uses to interact with the job
manager are only references to data that is actually contained in the job
manager process, not in the client session. After jobs and tasks are created, you
can shut down your client session and restart it, and your job is still stored in
the job manager. You can find existing jobs using the findJob function or the
Jobs property of the job manager object.
2-9

2 Programming Distributed and Parallel Applications

2-1
Find a Job Manager. You use the findResource function to identify available job
managers and to create an object representing a job manager in your local
MATLAB session.

To find a specific job manager, use parameter-value pairs for matching. In this
example, MyJobManager is the name of the job manager, while MyJMhost is the
hostname of the machine running the job manager lookup service.

jm = findResource('scheduler','type','jobmanager', ...
 'Name','MyJobManager','LookupURL','MyJMhost')
get(jm)
 Name: 'MyJobManager'
 Hostname: 'bonanza'
 HostAddress: {'123.123.123.123'}
 Jobs: [0x1 double]
 State: 'running'
 Configuration: ''
 NumberOfBusyWorkers: 0
 BusyWorkers: [0x1 double]
 NumberOfIdleWorkers: 2
 IdleWorkers: [2x1 distcomp.worker]

If your network supports multicast, you can omit property values to search on,
and findResource returns all available job managers.

all_managers = findResource('scheduler','type','jobmanager')

You can then examine the properties of each job manager to identify which one
you want to use.

for i = 1:length(all_managers)
 get(all_managers(i))
end

When you have identified the job manager you want to use, you can isolate it
and create a single object.

jm = all_managers(3)
0

Programming Distributed Jobs
Create a Job. You create a job with the createJob function. Although you
execute this command in the client session, the job is actually created on the
job manager.

job1 = createJob(jm)

This statement creates a job on the job manager jm, and creates the job object
job1 in the client session. Use get to see the properties of this job object.

get(job1)
 Name: 'job_3'
 ID: 3
 UserName: 'eng864'
 Tag: ''
 State: 'pending'
 RestartWorker: 0
 Timeout: Inf
 MaximumNumberOfWorkers: 2.1475e+009
 MinimumNumberOfWorkers: 1
 CreateTime: 'Thu Oct 21 19:38:08 EDT 2004'
 SubmitTime: ''
 StartTime: ''
 FinishTime: ''
 Tasks: [0x1 double]
 FileDependencies: {0x1 cell}
 PathDependencies: {0x1 cell}
 JobData: []
 Parent: [1x1 distcomp.jobmanager]
 UserData: []
 QueuedFcn: []
 RunningFcn: []
 FinishedFcn: []

Note that the job’s State property is pending. This means the job has not been
queued for running yet, so you can now add tasks to it.
2-11

2 Programming Distributed and Parallel Applications

2-1
The job manager’s Jobs property is now a 1-by-1 array of distcomp.job
objects, indicating the existence of your job.

get(jm)
 Name: 'MyJobManager'
 Hostname: 'bonanza'
 HostAddress: {'123.123.123.123'}
 Jobs: [1x1 distcomp.job]
 State: 'running'
 Configuration: ''
 NumberOfBusyWorkers: 0
 BusyWorkers: [0x1 double]
 NumberOfIdleWorkers: 2
 IdleWorkers: [2x1 distcomp.worker]

You can transfer files to the worker by using the FileDependencies property
of the job object. For details, see the FileDependencies reference page and
“Sharing Code” on page 2-13.

Create Tasks. After you have created your job, you can create tasks for the job
using the createTask function. Tasks define the functions to be evaluated by
the workers during the running of the job. Often, the tasks of a job are all
identical. In this example, each task will generate a 3-by-3 matrix of random
numbers.

createTask(job1, @rand, 1, {3,3});
createTask(job1, @rand, 1, {3,3});
createTask(job1, @rand, 1, {3,3});
createTask(job1, @rand, 1, {3,3});
createTask(job1, @rand, 1, {3,3});

The Tasks property of job1 is now a 5-by-1 matrix of task objects.

get(job1,'Tasks')
ans =
 distcomp.task: 5-by-1

Submit a Job to the Job Queue. To run your job and have its tasks evaluated, you
submit the job to the job queue with the submit function.

submit(job1)

The job manager distributes the tasks of job1 to its registered workers for
evaluation.
2

Programming Distributed Jobs
Retrieve the Job’s Results. The results of each task’s evaluation are stored in that
task object’s OutputArguments property as a cell array. Use the function
getAllOutputArguments to retrieve the results from all the tasks in the job.

results = getAllOutputArguments(job1);

Display the results from each task.

results{1:5}

 0.9501 0.4860 0.4565
 0.2311 0.8913 0.0185
 0.6068 0.7621 0.8214

 0.4447 0.9218 0.4057
 0.6154 0.7382 0.9355
 0.7919 0.1763 0.9169

 0.4103 0.3529 0.1389
 0.8936 0.8132 0.2028
 0.0579 0.0099 0.1987

 0.6038 0.0153 0.9318
 0.2722 0.7468 0.4660
 0.1988 0.4451 0.4186

 0.8462 0.6721 0.6813
 0.5252 0.8381 0.3795
 0.2026 0.0196 0.8318

Sharing Code
Because the tasks of a job are evaluated on different machines, each machine
must have access to all the files needed to evaluate its tasks. The basic
mechanisms for sharing code are explained in the following sections:

• “Directly Accessing Files” on page 2-14

• “Passing Data Between Sessions” on page 2-14

• “Passing M-Code for Startup and Finish” on page 2-15
2-13

2 Programming Distributed and Parallel Applications

2-1
Directly Accessing Files. If the workers all have access to the same drives on the
network, they can access needed files that reside on these shared resources.
This is the preferred method for sharing data, as it minimizes network traffic.

You must define each worker session’s path so that it looks for files in the right
places. You can define the path

• By using the job’s PathDependencies property. This is the preferred method
for setting the path, because it is specific to the job.

• By putting the path command in any of the appropriate startup files for the
worker:

- $MATLAB\toolbox\local\startup.m file

- $MATLAB\toolbox\distcomp\user\jobStartup.m file

- $MATLAB\toolbox\distcomp\user\taskStartup.m file.

These files can be passed to the worker by the job’s FileDependencies or
PathDependencies property. Otherwise, the version of each of these files
that is used is the one highest on the worker’s path.

Access to files among shared resources can depend upon permissions based on
the user name. You can set the user name with which the job manager and
worker services of the MATLAB Distributed Computing Engine run by setting
the MDCEUSER value in the mdce_def file before starting the services. For
Windows systems, there is also MDCEPASS for providing the account password
for the specified user. For an explanation of service default settings and the
mdce_def file, see “Defining the Script Defaults” in the MATLAB Distributed
Computing Engine System Administrator’s Guide.

Passing Data Between Sessions. A number of properties on task and job objects are
designed for passing code or data from client to job manager to worker, and
back. This information could include M-code necessary for task evaluation, or
the input data for processing or output data resulting from task evaluation. All
these properties are described in detail in their own reference pages:

• InputArguments — This property of each task contains the input data
provided to the task constructor. This data gets passed into the function
when the worker performs its evaluation.

• OutputArguments — This property of each task contains the results of the
function’s evaluation.
4

Programming Distributed Jobs
• JobData — This property of the job object contains data that gets sent to
every worker that evaluates tasks for that job. This property works
efficiently because the data is passed to a worker only once per job, saving
time if that worker is evaluating more than one task for the job.

• FileDependencies — This property of the job object lists all the directories
and files that get zipped and sent to the workers. At the worker, the data is
unzipped, and the entries defined in the property are added to the path of the
MATLAB worker session.

The default maximum amount of data that can be sent in a single call for
setting properties is approximately 50 MB. This limit applies to the
OutputArguments property as well as to data passed into a job. If the limit is
exceeded, you get an error message. For information on how to increase this
limit, see “Object Data Size Limitations” on page 2-51.

Passing M-Code for Startup and Finish. As a session of MATLAB, a worker session
executes its startup.m file each time it starts. You can place the startup.m file
in any directory on the worker’s MATLAB path, such as
toolbox/distcomp/user.

Three additional M-files can initialize and clean up a worker session as it
begins or completes evaluations of tasks for a job:

• jobStartup.m automatically executes on a worker when the worker runs its
first task of a job.

• taskStartup.m automatically executes on a worker each time the worker
begins evaluation of a task.

• taskFinish.m automatically executes on a worker each time the worker
completes evaluation of a task.

Empty versions of these files are provided in the directory

$MATLAB/toolbox/distcomp/user

You can edit these files to include whatever M-code you want the worker to
execute at the indicated times.

Alternatively, you can create your own versions of these M-files and pass them
to the job as part of the FileDependencies property, or include the path names
to their locations in the PathDependencies property.
2-15

2 Programming Distributed and Parallel Applications

2-1
The worker gives precedence to the versions provided in the FileDependencies
property, then to those pointed to in the PathDependencies property. If any of
these files is not included in these properties, the worker uses the version of the
file in the toolbox/distcomp/user directory of the worker’s MATLAB
installation.

For further details on these M-files, see the jobStartup, taskStartup, and
taskFinish reference pages.

Managing Objects in the Job Manager
Because all the data of jobs and tasks resides in the job manager, these objects
continue to exist even if the client session that created them has ended. The
following sections describe how to access these objects and how to permanently
remove them:

• “What Happens When the Client Session Ends?” on page 2-16

• “Recovering Objects” on page 2-16

• “Permanently Removing Objects” on page 2-18

What Happens When the Client Session Ends? When you close the client session of
the Distributed Computing Toolbox, all of the objects in the workspace are
cleared. However, the objects in the MATLAB Distributed Computing Engine
remain in place. Job objects and task objects reside on the job manager. Local
objects in the client session can refer to job managers, jobs, tasks, and workers.
When the client session ends, only these local reference objects are lost, not the
actual objects in the engine.

Therefore, if you have submitted your job to the job queue for execution, you
can quit your client session of MATLAB, and the job will be executed by the job
manager. The job manager maintains its job and task objects. You can retrieve
the job results later in another client session.

Recovering Objects. A client session of the Distributed Computing Toolbox can
access any of the objects in the MATLAB Distributed Computing Engine,
whether the current client session or another client session created these
objects.

You create job manager and worker objects in the client session by using the
findResource function. These client objects refer to sessions running in the
engine.
6

Programming Distributed Jobs
jm = findResource('scheduler','type','jobmanager', ...
 'Name','Job_Mgr_123','LookupURL','JobMgrHost')

If your network supports multicast, you can find all available job managers by
omitting any specific property information.

jm_set = findResource('scheduler','type','jobmanager')

The array jm_set contains all the job managers accessible from the client
session. You can index through this array to determine which job manager is
of interest to you.

jm = jm_set(2)

When you have access to the job manager by the object jm, you can create
objects that reference all those objects contained in that job manager. All the
jobs contained in the job manager are accessible in its Jobs property, which is
an array of job objects.

all_jobs = get(jm,'Jobs')

You can index through the array all_jobs to locate a specific job.

Alternatively, you can use the findJob function to search in a job manager for
particular job identified by any of its properties, such as its State.

finished_jobs = findJob(jm,'State','finished')

This command returns an array of job objects that reference all finished jobs on
the job manager jm.

Resetting Callback Properties. When restarting a client session, you lose the
settings of any callback properties (for example, the FinishedFcn property) on
jobs or tasks. These properties are commonly used to get notifications in the
client session of state changes in their objects. When you create objects in a new
client session that reference existing jobs or tasks, you must reset these
callback properties if you intend to use them.
2-17

2 Programming Distributed and Parallel Applications

2-1
Permanently Removing Objects
Jobs in the job manager continue to exist even after they are finished, and after
the job manager is stopped and restarted. The ways to permanently remove
jobs from the job manager are explained in the following sections:

• “Destroying Selected Objects”

• “Starting a Job Manager from a Clean State”

Destroying Selected Objects. From the command line in the MATLAB client
session, you can call the destroy function for any job or task object. If you
destroy a job, you destroy all tasks contained in that job.

For example, find and destroy all finished jobs in your job manager that belong
to the user joep.

jm = findResource('jobmanager','name','MyJobManager' ...
 'LookupURL','JobMgrHost')
finished_jobs = findJob(jm,'State','finished','UserName','joep')
destroy(finished_jobs)
clear finished_jobs

The destroy function permanently removes these jobs from the job manager.
The clear function removes the object references from the local MATLAB
workspace.

Starting a Job Manager from a Clean State. When a job manager starts, by default it
starts so that it resumes its former session with all jobs intact. Alternatively, a
job manager can start from a clean state with all its former history deleted.
Starting from a clean state permanently removes all job and task data from the
job manager of the specified name on a particular host.

As a network administration feature, the -clean flag of the job manager
startup script is described in “Starting in a Clean State” in the MATLAB
Distributed Computing Engine System Administrator’s Guide.
8

Programming Distributed Jobs
Using an LSF Scheduler
If your network already uses a Load Sharing Facility (LSF), you can use the
Distributed Computing Toolbox to create jobs to be distributed by your existing
scheduler. The following sections provide instructions for using your LSF
scheduler:

• “Creating and Running Jobs with an LSF Scheduler” on page 2-19

• “Sharing Code” on page 2-23

• “Managing Objects” on page 2-25

Creating and Running Jobs with an LSF Scheduler
This section details the steps of a typical programming session with the
Distributed Computing Toolbox for jobs distributed to workers by an LSF
scheduler.

This section assumes you have LSF installed and running on your network. For
more information about LSF, see http://www.platform.com/Products/.

The following sections illustrate how to program the Distributed Computing
Toolbox to use an LSF scheduler:

• “Find a Scheduler” on page 2-19

• “Create a Job” on page 2-20

• “Create Tasks” on page 2-22

• “Submit a Job to the Job Queue” on page 2-22

• “Retrieve the Job’s Results” on page 2-23

Find a Scheduler. You use the findResource function to identify the LSF
scheduler and to create an object representing the scheduler in your local
MATLAB client session.

You specify 'LSF' as the name for findResource to search for.

sched = findResource('scheduler','type','LSF')

You set properties on the scheduler object to specify

• Where the job data is stored

• That the workers should access job data directly in a shared file system

• The MATLAB root for the workers to use
2-19

2 Programming Distributed and Parallel Applications

2-2
set(sched,'DataLocation','\\apps\data\project_55')
set(sched,'HasSharedFilesystem',true)
set(sched,'ClusterMatlabRoot','\\apps\matlab\')

If DataLocation is not set, the default location for job data is the current
working directory of the MATLAB client.

Note In a shared file system, all nodes require access to the directory
specified in the scheduler object’s DataLocation directory. See the
DataLocation reference page for information on setting this property for a
mixed-platform environment.

You can look at all the property settings on the scheduler object. If no jobs are
in the DataLocation directory, the Jobs property is a 0-by-1 array.

get(sched)
 DataLocation: '\\apps\data\project_55'
 HasSharedFilesystem: 1
 Jobs: [0x1 double]
 ClusterMatlabRoot: '\\apps\matlab\'
 ClusterName: 'CENTER_MATRIX_CLUSTER'
 MasterName: 'masterhost.clusternet.ourdomain.com'
 SubmitArguments: ''

Create a Job. You create a job with the createJob function, which creates a job
object in the client session. The job data is stored in the directory specified by
the scheduler object’s DataLocation property.

j = createJob(sched)

This statement creates the job object j in the client session. Use get to see the
properties of this job object.

get(j)
 Type: 'job'
 Name: 'Job1'
 ID: 1
 UserName: 'eng1'
 Tag: ''
 State: 'pending'
0

Programming Distributed Jobs
 CreateTime: 'Fri Jul 29 16:15:47 EDT 2005'
 SubmitTime: ''
 StartTime: ''
 FinishTime: ''
 Tasks: [0x1 double]
 FileDependencies: {0x1 cell}
 PathDependencies: {0x1 cell}
 JobData: []
 Parent: [1x1 distcomp.lsfscheduler]
 UserData: []

Note that this job using an LSF scheduler has somewhat different properties
than a job that uses a job manager. For example, this job has no callback
functions.

The job’s State property is pending. This state means the job has not been
queued for running yet. This new job has no tasks, so its Tasks property is a
0-by-1 array.

The scheduler’s Jobs property is now a 1-by-1 array of distcomp.simplejob
objects, indicating the existence of your job.

get(sched)
 DataLocation: '\\apps\data\project_55'
 HasSharedFilesystem: 1
 Jobs: [1x1 distcomp.simplejob]
 ClusterMatlabRoot: '\\apps\matlab\'
 ClusterName: 'CENTRAL_CLUSTER'
 MasterName: 'masterhost.clusternet.ourdomain.com'
 SubmitArguments: ''

You can transfer files to the worker by using the FileDependencies property
of the job object. Workers can access shared files by using the
PathDependencies property of the job object. For details, see the
FileDependencies and PathDependencies reference pages and “Sharing Code”
on page 2-13.

Note Properties of a particular job or task should be set from only one
computer at a time.
2-21

2 Programming Distributed and Parallel Applications

2-2
Create Tasks. After you have created your job, you can create tasks for the job.
Tasks define the functions to be evaluated by the workers during the running
of the job. Often, the tasks of a job are all identical except for different
arguments or data. In this example, each task will generate a 3-by-3 matrix of
random numbers.

createTask(j, @rand, 1, {3,3});
createTask(j, @rand, 1, {3,3});
createTask(j, @rand, 1, {3,3});
createTask(j, @rand, 1, {3,3});
createTask(j, @rand, 1, {3,3});

The Tasks property of j is now a 5-by-1 matrix of task objects.

get(j,'Tasks')
ans =
 distcomp.simpletask: 5-by-1

Submit a Job to the Job Queue. To run your job and have its tasks evaluated, you
submit the job to the LSF scheduler’s job queue.

submit(j)

The scheduler distributes the tasks of job j to MATLAB workers for evaluation.
For each task, the scheduler starts a MATLAB worker session on a worker
node; this MATLAB worker session runs for only as long as it takes to evaluate
the one task. If the same node evaluates another task in the same job, it does
so with a different MATLAB worker session.

The job runs asynchronously. If you need to wait for it to complete before you
continue in your MATLAB client session, you can use the waitForState
function.

waitForState(j)

The default state to wait for is finished. This function causes MATLAB to
pause until the State property of j is 'finished'.

Note When you use an LSF scheduler in a nonshared file system, the
scheduler might report that a job is in the finished state while the job’s files
might not yet have completed their transfer.
2

Programming Distributed Jobs
Retrieve the Job’s Results. The results of each task’s evaluation are stored in that
task object’s OutputArguments property as a cell array. Use
getAllOutputArguments to retrieve the results from all the tasks in the job.

results = getAllOutputArguments(j);

Display the results from each task.

results{1:5}

 0.9501 0.4860 0.4565
 0.2311 0.8913 0.0185
 0.6068 0.7621 0.8214

 0.4447 0.9218 0.4057
 0.6154 0.7382 0.9355
 0.7919 0.1763 0.9169

 0.4103 0.3529 0.1389
 0.8936 0.8132 0.2028
 0.0579 0.0099 0.1987

 0.6038 0.0153 0.9318
 0.2722 0.7468 0.4660
 0.1988 0.4451 0.4186

 0.8462 0.6721 0.6813
 0.5252 0.8381 0.3795
 0.2026 0.0196 0.8318

Sharing Code
Because different machines evaluate the tasks of a job, each machine must
have access to all the files needed to evaluate its tasks. The following sections
explain the basic mechanisms for sharing data:

• “Directly Accessing Files” on page 2-24

• “Passing Data Between Sessions” on page 2-24

• “Passing M-Code for Startup and Finish” on page 2-25
2-23

2 Programming Distributed and Parallel Applications

2-2
Directly Accessing Files. If all the workers have access to the same drives on the
network, they can access needed files that reside on these shared resources.
This is the preferred method for sharing data, as it minimizes network traffic.

You must define each worker session’s path so that it looks for files in the
correct places. You can define the path by

• Using the job’s PathDependencies property. This is the preferred method for
setting the path, because it is specific to the job.

• Putting the path command in any of the appropriate startup files for the
worker:

- $MATLAB\toolbox\local\startup.m

- $MATLAB\toolbox\distcomp\user\jobStartup.m

- $MATLAB\toolbox\distcomp\user\taskStartup.m

These files can be passed to the worker by the job’s FileDependencies or
PathDependencies property. Otherwise, the version of each of these files
that is used is the one highest on the worker’s path.

Passing Data Between Sessions. A number of properties on task and job objects are
for passing code or data from client to scheduler or worker, and back. This
information could include M-code necessary for task evaluation, or the input
data for processing or output data resulting from task evaluation. All these
properties are described in detail in their own reference pages:

• InputArguments — This property of each task contains the input data
provided to the task constructor. This data gets passed into the function
when the worker performs its evaluation.

• OutputArguments — This property of each task contains the results of the
function’s evaluation.

• JobData — This property of the job object contains data that gets sent to
every worker that evaluates tasks for that job.

• FileDependencies — This property of the job object lists all the directories
and files that get zipped and sent to the workers. At the worker, the data is
unzipped, and the entries defined in the property are added to the path of the
MATLAB worker session.
4

Programming Distributed Jobs
Passing M-Code for Startup and Finish. As a session of MATLAB, a worker session
executes its startup.m file each time it starts. You can place the startup.m file
in any directory on the worker’s MATLAB path, such as
toolbox/distcomp/user.

Three additional M-files can initialize and clean a worker session as it begins
or completes evaluations of tasks for a job:

• jobStartup.m automatically executes on a worker when the worker runs its
first task of a job.

• taskStartup.m automatically executes on a worker each time the worker
begins evaluation of a task.

• taskFinish.m automatically executes on a worker each time the worker
completes evaluation of a task.

Empty versions of these files are provided in the directory

$MATLAB/toolbox/distcomp/user

You can edit these files to include whatever M-code you want the worker to
execute at the indicated times.

Alternatively, you can create your own versions of these M-files and pass them
to the job as part of the FileDependencies property, or include the pathnames
to their locations in the PathDependencies property.

The worker gives precedence to the versions provided in the FileDependencies
property, then to those pointed to in the PathDependencies property. If any of
these files is not included in these properties, the worker uses the version of the
file in the toolbox/distcomp/user directory of the worker’s MATLAB
installation.

For further details on these M-files, see the jobStartup, taskStartup, and
taskFinish reference pages.

Managing Objects
Objects that the client session uses to interact with the LSF scheduler are only
references to data that is actually contained in the directory specified by the
DataLocation property. After jobs and tasks are created, you can shut down
your client session, restart it, and your job will still be stored in that remote
location. You can find existing jobs using the Jobs property of the recreated
scheduler object.
2-25

2 Programming Distributed and Parallel Applications

2-2
The following sections describe how to access these objects and how to
permanently remove them:

• “What Happens When the Client Session Ends?” on page 2-26

• “Recovering Objects” on page 2-26

• “Destroying Jobs” on page 2-27

What Happens When the Client Session Ends? When you close the client session of
the Distributed Computing Toolbox, all of the objects in the workspace are
cleared. However, job objects in the scheduler remain in place. Job and task
data remains in the directory identified by DataLocation. When the client
session ends, only its local reference objects are lost, not the objects in the
scheduler or their data.

Therefore, if you have submitted your job to the scheduler job queue for
execution, you can quit your client session of MATLAB, and the job will be
executed by the scheduler. The scheduler maintains its job and task objects.
You can retrieve the job results later in another client session.

Recovering Objects. A client session of the Distributed Computing Toolbox can
access any of the objects in the DataLocation, whether the current client
session or another client session created these objects.

You create scheduler objects in the client session by using the findResource
function. These objects refer to jobs listed in the scheduler, whose data is found
in the specified DataLocation.

sched = findResource('scheduler','type','LSF');
set(sched,'DataLocation','/apps/data/project_88');

When you have access to the scheduler by the object sched, you can create
objects that reference all those objects contained in that scheduler. All the jobs
contained in the scheduler are accessible in its Jobs property, which is an array
of job objects.

all_jobs = get(sched,'Jobs')

You can index through the array all_jobs to locate a specific job.

Alternatively, you can use the findJob function to search in a scheduler object
for a particular job identified by any of its properties, such as its State.

finished_jobs = findJob(sched,'State','finished')
6

Programming Distributed Jobs
This command returns an array of job objects that reference all finished jobs on
the scheduler sched, whose data is found in the specified DataLocation.

Destroying Jobs. Jobs in the scheduler continue to exist even after they are
finished. From the command line in the MATLAB client session, you can call
the destroy function for any job object. If you destroy a job, you destroy all
tasks contained in that job. The job and task data is deleted from the
DataLocation directory.

For example, find and destroy all finished jobs in your scheduler whose data is
stored in a specific directory.

sched = findResource('scheduler','name','LSF');
set(sched,'DataLocation','/apps/data/project_88');
finished_jobs = findJob(sched,'State','finished');
destroy(finished_jobs);
clear finished_jobs

The destroy function permanently removes from the scheduler those jobs
whose data is in /apps/data/project_88. The clear function removes the
object references from the local MATLAB client workspace.

Using a Generic Scheduler
You can use a generic scheduler to run jobs and distribute tasks to workers.
A generic scheduler provides the means to interact with other third-party
schedulers, or to create your own scripts for distributing tasks to other nodes
on the cluster for evaluation.

The scheduler is a separate application that receives information from your
MATLAB client session. With that information, the scheduler starts remote
MATLAB worker sessions to evaluate individual tasks of the job. Whereas a job
manager keeps MATLAB workers running between tasks, a third-party
scheduler runs a MATLAB worker for only as long as it takes the worker to
evaluate one task.
2-27

2 Programming Distributed and Parallel Applications

2-2
However, from the perspective of the MATLAB client, using a generic
scheduler is similar to using a job manager or LSF scheduler. You create a
scheduler object, jobs, and tasks. Some of the properties of the objects are
different, but the theory of running your job is the same. You submit your job
to the queue for execution and then retrieve the results. But unlike the
MathWorks job manager, which manages the job data for you, a third-party or
generic scheduler requires that you manage where job data is stored and
assure that all the workers can access it.

The following sections describe how the Distributed Computing Toolbox
interacts with your scheduler to run jobs.

• “Programming the Generic Scheduler Object in MATLAB” on page 2-28

• “Using the Submit Function” on page 2-29

• “Using the Decode Function” on page 2-32

• “Running a Job” on page 2-33

Programming the Generic Scheduler Object in MATLAB
This section illustrates how you write a program for running a job with a
generic scheduler.

Create a Scheduler Object. You use the findResource function to create an object
representing the scheduler in your local MATLAB client session.

You can specify 'generic' as the name for findResource to search for. (Any
scheduler name starting with the string 'generic' will create a generic
scheduler object.)

sched = findResource('scheduler','type','generic')

Set Scheduler Object Properties. Generic schedulers must use a shared file system
for workers to access job and task data. Set the DataLocation and
HasSharedFilesystem properties to specify where the job data is stored, and
that the workers should access job data directly in a shared file system.

set(sched,'DataLocation','\\apps\data\project_101')
set(sched,'HasSharedFilesystem',true)
8

Programming Distributed Jobs
Note In a shared file system, all nodes require access to the directory
specified in the scheduler object’s DataLocation directory. See the
DataLocation reference page for information on setting this property for a
mixed-platform environment.

If DataLocation is not set, the default location for job data is the current
working directory of the MATLAB client, which might not be accessible to the
worker nodes.

Set the ClusterMatlabRoot property to specify where the MATLAB
installation is that the workers are to run for their tasks, if MATLAB is not on
the worker’s system path.

set(sched,'ClusterMatlabRoot','\\apps\matlab\')

You can look at all the property settings on the scheduler object. If no jobs are
in the DataLocation directory, the Jobs property is a 0-by-1 array.

get(sched)
 DataLocation: '\\apps\data\project_101'
 HasSharedFilesystem: 1
 Jobs: [0x1 double]
 ClusterMatlabRoot: '\\apps\matlab\'
 MatlabCommandToRun: 'matlab -dmlworker -nodisplay -r
 distcomp_evaluate_filetask'
 Type: 'generic'
 SubmitFcn: []

You must set the SubmitFcn property to specify the submit function for this job.

set(sched,'SubmitFcn',@submitFunc)

Using the Submit Function
This section describes the user-defined submit function you use for a generic
scheduler. This function, specified by the SubmitFcn property, runs in the
MATLAB client when you submit a job to the generic scheduler’s queue for
execution. Generally, you need only one user-defined submit function for your
cluster, and all applications running on that cluster can use the same function.
2-29

2 Programming Distributed and Parallel Applications

2-3
The user-defined submit function has three purposes:

• To identify the decode function that MATLAB workers run when they start

• To make information about job and task data locations available to the
workers via the decode function

• To call the scheduler command to execute a job

Identify the Decode Function. Your submit function that runs on the MATLAB
client has a complementary decode function that runs on the MATLAB worker.
That decode function is identified in your submit function. For the worker to
run the decode function, the function filename must be passed in the
environment variable MDCE_DECODE_FUNCTION. This environment variable
must exist on the worker computer before the scheduler starts the MATLAB
worker session on that computer. The function’s location must be on the path
of the MATLAB worker.

Pass Location Data to the Worker. When the user-defined submit function is called,
it receives at least three arguments: the scheduler object, the job object, and a
properties object. (You can use additional arguments if necessary.) Through
your submit function, you must make available to the workers some of the
information from the properties object. This could be done through shared files,
environment variables, or any other means convenient for your configuration.

To see what information is passed into your submit function, type

get(distcomp.setprop)

 StorageConstructor: ''
 StorageLocation: ''
 JobLocation: ''
 TaskLocations: {0x1 cell}
 NumberOfTasks: 0

Though the properties appear without any values, you can see what the
property names are. In your submit function, you must make the values of
these properties available for the decode function that will run from the
MATLAB worker session on another node.
0

Programming Distributed Jobs
Call the Scheduler Command. With properties of the scheduler and job objects, you
define the command for your scheduler to run a job. The following example
illustrates a command composed in part from properties of the scheduler object
and job being run.

Example Submit Function. Following is an example of a user-defined submit
function that uses environment variables to pass information into the
MATLAB worker sessions. This example runs worker sessions on the same
machine. Commonly, you would have your function communicate with a
third-party scheduler to distribute the tasks, or you might have your function
run worker sessions on remote nodes with something like ssh.

For the complementary decode function, see “Example Decode Function” on
page 2-33.

function submitFunc(scheduler, job, props, varargin)
% This helper function is used by generic schedulers. It prepares
% the environment for a MATLAB worker, and starts whichever
% MATLAB is first on the path.
% See also workerDecodeFunc.
%
% Assign the relevant values to environment variables, starting
% with identifying the decode function to be run by the worker:
decodeFcn = 'workerDecodeFunc';
dct_putenv('MDCE_DECODE_FUNCTION', decodeFcn);
%
% Set the other job-related environment variables:
dct_putenv('MDCE_STORAGE_LOCATION', props.StorageLocation);
dct_putenv('MDCE_STORAGE_CONSTRUCTOR',props.StorageConstructor);
dct_putenv('MDCE_JOB_LOCATION', props.JobLocation);
%
% Set the task-related variable:
prevDir = cd(fileparts(which(decodeFcn)));
for i = 1:props.NumberOfTasks
 dct_putenv('MDCE_TASK_LOCATION', props.TaskLocations{i});
 % Run a MATLAB worker for each task in the job:
 if ispc
 system(['start ' scheduler.MatlabCommandToRun]);
 else
 logLocation = [scheduler.DataLocation filesep ...
 props.TaskLocations{i} '.log'];
2-31

2 Programming Distributed and Parallel Applications

2-3
 system([scheduler.MatlabCommandToRun ' > ' ...
 logLocation ' &']);
 end
end
cd(prevDir);

Using the Decode Function
This section describes the decode function run by the MATLAB worker that
receives a task from your generic scheduler. The purpose of the decode function
is to receive information from the scheduler about job and task data locations.

The decode function must be on the path of the MATLAB worker. It runs in the
MATLAB worker as soon as that session begins. Generally, you need only one
decode function for your cluster, and all applications running on that cluster
can use the same function.

Because the scheduler object’s submit function identifies the decode function,
the decode and submit functions complement each other. That is, the decode
function complies with the data transfer means defined in the submit function.

The decode function has an output argument that is an object whose properties
reflect the information necessary for the MATLAB worker to evaluate its
assigned task. To see the properties of this object, type

get(distcomp.runprop)

 StorageConstructor: ''
 StorageLocation: ''
 JobLocation: ''
 TaskLocation: ''
 DependencyDirectory: 'C:\Temp\tmp12345'
 HasSharedFilesystem: 1

The decode function must set the property values with data received from the
complementary submit function, by whatever means data was made available.
(The DependencyDirectory property is optional. This allows you to define
where the FileDependencies are unzipped on the worker, as opposed to using
the default location.)
2

Programming Distributed Jobs
Example Decode Function. Following is an example decode function that
complements the user-defined submit function in the previous example.
Because that submit function made the properties available as environment
variables, this corresponding decode function reads the values of those
environment variables and returns them to the MATLAB worker session.

For the complementary submit function, see “Example Submit Function” on
page 2-31.

function workerDecodeFunc(runprop)
% This function is referenced by SubmitFunc. If a generic
% scheduler has been created with SubmitFcn = 'submitFunc', this
% function will be called on the MATLAB workers started by that
% generic scheduler.
% THIS FUNCTION MUST BE ON THE PATH OF THOSE MATLAB WORKERS;
% typically, this is accomplished by changing to the directory
% where this function is, before starting those MATLAB workers.
%
% Read environment variables into local variables. The names of
% the environment variables were determined by submitFunc.
storageConstructor = getenv('MDCE_STORAGE_CONSTRUCTOR');
storageLocation = getenv('MDCE_STORAGE_LOCATION');
jobLocation = getenv('MDCE_JOB_LOCATION');
taskLocation = getenv('MDCE_TASK_LOCATION');
%
% Set runprop properties from the local variables:
set(runprop, ...
 'StorageConstructor', storageConstructor, ...
 'StorageLocation', storageLocation, ...
 'JobLocation', jobLocation,
 'TaskLocation', taskLocation);

Running a Job
This section illustrates the running of a job on your generic scheduler from the
MATLAB client session. With the scheduler running and the user-defined
submit and decode functions defined, running a job is now similar to running
with a job manager or any other type of scheduler.
2-33

2 Programming Distributed and Parallel Applications

2-3
Create a Job. You create a job with the createJob function, which creates a job
object in the client session. The job data is stored in the directory specified by
the scheduler object’s DataLocation property.

j = createJob(sched)

This statement creates the job object j in the client session. Use get to see the
properties of this job object.

get(j)
 Type: 'job'
 Name: 'Job1'
 ID: 1
 UserName: 'neo'
 Tag: ''
 State: 'pending'
 CreateTime: 'Fri Jul 29 16:15:47 EDT 2005'
 SubmitTime: ''
 StartTime: ''
 FinishTime: ''
 Tasks: [0x1 double]
 FileDependencies: {0x1 cell}
 PathDependencies: {0x1 cell}
 JobData: []
 Parent: [1x1 distcomp.genericscheduler]
 UserData: []

Note Properties of a particular job or task should be set from only one
computer at a time.

Note that this generic scheduler job has somewhat different properties than a
job that uses a job manager. For example, this job has no callback functions.

The job’s State property is pending. This state means the job has not been
queued for running yet. This new job has no tasks, so its Tasks property is a
0-by-1 array.
4

Programming Distributed Jobs
The scheduler’s Jobs property is now a 1-by-1 array of distcomp.simplejob
objects, indicating the existence of your job.

get(sched)
 DataLocation: '\\apps\data\project_101'
 HasSharedFilesystem: 1
 Jobs: [1x1 distcomp.simplejob]
 ClusterMatlabRoot: '\\apps\matlab\'
 MatlabCommandToRun: 'matlab -dmlworker -nodisplay -r
 distcomp_evaluate_filetask'
 Type: 'generic'
 SubmitFcn: @submitFunc

Create Tasks. After you have created your job, you can create tasks for the job.
Tasks define the functions to be evaluated by the workers during the running
of the job. Often, the tasks of a job are all identical except for different
arguments or data. In this example, each task will generate a 3-by-3 matrix of
random numbers.

createTask(j, @rand, 1, {3,3});
createTask(j, @rand, 1, {3,3});
createTask(j, @rand, 1, {3,3});
createTask(j, @rand, 1, {3,3});
createTask(j, @rand, 1, {3,3});

The Tasks property of j is now a 5-by-1 matrix of task objects.

get(j,'Tasks')
ans =
 distcomp.simpletask: 5-by-1

Submit a Job to the Job Queue. To run your job and have its tasks evaluated, you
submit the job to the scheduler’s job queue.

submit(j)

The scheduler distributes the tasks of j to MATLAB workers for evaluation.

The job runs asynchronously. If you need to wait for it to complete before you
continue in your MATLAB client session, you can use the waitForState
function.

waitForState(j)
2-35

2 Programming Distributed and Parallel Applications

2-3
The default state to wait for is finished or failed. So this function causes
MATLAB to pause until the State property of j is 'finished' or 'failed'.

Retrieve the Job’s Results. The results of each task’s evaluation are stored in that
task object’s OutputArguments property as a cell array. Use
getAllOutputArguments to retrieve the results from all the tasks in the job.

results = getAllOutputArguments(j);

Display the results from each task.

results{1:5}

 0.9501 0.4860 0.4565
 0.2311 0.8913 0.0185
 0.6068 0.7621 0.8214

 0.4447 0.9218 0.4057
 0.6154 0.7382 0.9355
 0.7919 0.1763 0.9169

 0.4103 0.3529 0.1389
 0.8936 0.8132 0.2028
 0.0579 0.0099 0.1987

 0.6038 0.0153 0.9318
 0.2722 0.7468 0.4660
 0.1988 0.4451 0.4186

 0.8462 0.6721 0.6813
 0.5252 0.8381 0.3795
 0.2026 0.0196 0.8318
6

Programming Parallel Jobs
Programming Parallel Jobs
A parallel job consists of only a single task that runs simultaneously on several
workers. More specifically, the task is duplicated on each worker, so each
worker can perform the task on a different set of data, or on a particular
segment of a large data set. The workers can communicate with each other as
each executes its task. In this configuration, workers are referred to as labs.

In principle, creating and running parallel jobs is similar to programming
distributed jobs:

1 Find a scheduler

2 Create a parallel job

3 Create a task

4 Submit the job for running

5 Retrieve results

The differences between distributed jobs and parallel jobs are summarized in
the following table.

Distributed Job Parallel Job

MATLAB sessions, called
workers, perform the tasks but
do not communicate with each
other.

MATLAB sessions, called labs, can
communicate with each other during
the running of their tasks.

You define any number of tasks
in a job.

You define only one task in a job.
Duplicates of that task run on all labs
running the parallel job.
2-37

2 Programming Distributed and Parallel Applications

2-3
A parallel job has only one task that runs simultaneously on every lab. The
function that the task runs can take advantage of a lab’s awareness of how
many labs are running the job, which lab this is among those running the job,
and the features that allow labs to communicate with each other.

The following sections describe how to program parallel jobs:

• “Using a Job Manager” on page 2-38

• “Using an mpiexec Scheduler” on page 2-40

• “Further Notes on Parallel Jobs” on page 2-43

Using a Job Manager
You can run a parallel job using the job manager or an mpiexec scheduler. This
section illustrates a parallel job programmed for the job manager.

Coding the Task Function
In this example, the lab whose labindex value is 1 creates a magic square
comprised of a number of rows and columns that is equal to the number of labs
running the job. More specifically, four labs run a parallel job with a 4-by-4
magic square. The first lab broadcasts the matrix to all the other labs, each of
which calculates the sum of one column of the matrix. All of these column sums
are combined to calculate the total sum of the elements of the original magic
square.

The function for this example is shown below.

function total_sum = colsum
if labindex == 1

Tasks need not run
simultaneously. Tasks are
distributed to workers as the
workers become available, so a
worker can perform several of
the tasks in a job.

Tasks run simultaneously, so you can
run the job only on as many labs as
are available at run time. The start of
the job might be delayed until the
required number of labs is available.

Supported by any type of
scheduler.

Supported only by mpiexec schedulers
and the MathWorks job manager.

Distributed Job Parallel Job
8

Programming Parallel Jobs
 % Send magic square to other labs
 A = labBroadcast(1,magic(numlabs))
else
 % Receive broadcast on other labs
 A = labBroadcast(1)
end

% Calculate sum of column identied by labindex for this lab
column_sum = sum(A(:,labindex))

% Calculate total sum by combining column sum from all labs
total_sum = gop(@plus, column_sum)

This function is saved as the file colsum.m on the path of the MATLAB client.
It will be sent to each lab by the job’s FileDependencies property.

While this example has one lab create the magic square and broadcast it to the
other labs, there are alternative methods of getting data to the labs. In this
case, each lab could create the matrix for itself. Alternatively, each lab could
read its part of the data from a common file, the data could be passed in as an
argument to the task function, or the data could be sent in a file contained in
the job’s FileDependencies property. The solution you choose will depend on
your network configuration and the nature of the data.

Coding in the Client
As with distributed jobs, you find a scheduler and create a scheduler object in
your MATLAB client by using the findResource function.

jm = findResource('scheduler','type','jobmanager', ...
 'name','MyJobManager','LookupURL','jobmanhost')

You create the job with the createParallelJob function.

pjob = createParallelJob(jm);

To run the job on four labs, set the job’s properties that limit the number of
workers.

set(pjob,'MinimumNumberOfWorkers',4)
set(pjob,'MaximumNumberOfWorkers',4)
2-39

2 Programming Distributed and Parallel Applications

2-4
The function file colsum.m is on the MATLAB client path, but it has to be made
available to the labs. One way to do this is with the job’s FileDependencies
property.

set(pjob,'FileDependencies',{'colsum.m'})

You create the job’s one task with the usual createTask function. In this
example, the task returns only one argument from each lab, and there are no
input arguments to the colsum function.

t = createTask(pjob, @colsum, 1, {})

Use submit to run the job.

submit(pjob)

Make the MATLAB client wait for the job to finish before collecting the results.
The results consist of one value from each lab. The gop function in the task
shares data between the labs, so that each lab has the same result.

waitForState(pjob)
results = getAllOutputArguments(pjob)
results =
 [136]
 [136]
 [136]
 [136]

Using an mpiexec Scheduler
Parallel jobs can run on an mpiexec scheduler. You might already have access
to an mpiexec scheduler on your cluster, or your administrator can set one up
using the mpiexec software included with the MATLAB Distributed
Computing Engine.

This example estimates the value of pi by dividing up the integration of the
function 4/(1 + x2) over the range 0 to 1. The task function can accommodate
any number of labs, but in this example the client code specifies the number of
labs as 4.
0

Programming Parallel Jobs
Coding the Task Function
In this example, the task function requires no input arguments. As a lab runs
the task, it is aware of how many labs are running the job, and divides the total
integration interval into a number of subintervals. So, if you use four labs, each
lab integrates one-fourth of the entire integral. The total number of labs is
identified by the value numlabs, while each lab performing a task for this job
has a unique labindex, starting with 1, 2, etc. In this example, numlabs is 4,
and the values of labindex are 1, 2, 3, and 4.

When all the labs have finished calculating their own portions of the integral,
labs 2, 3, and 4 use the labSend function to transfer their results to lab 1, which
collects this data with the labReceive function.

function piApprox = quadpi
% QUADPI Approximate pi via parallel numerical quadrature.

% Copyright 2005 The MathWorks, Inc.

% Approximate pi by the numerical integral
% of F = 4/(1 + x^2) from 0 to 1.
F = @(x)4./(1 + x.^2);
% Each lab calculates the integral of F over a
% subinterval [a, b] of [0, 1].
a = (labindex - 1)/numlabs;
b = labindex/numlabs;
% Use a built-in MATLAB quadrature method to approximate
% the integral.
myIntegral = quadl(F,a,b);

% The labs have now all calculated their portions of the
% integral of F, and will all send their results to lab 1, which
% will add them together to form the entire integral over [0, 1].
if (labindex == 1)
 % Receive the integral contribution from all the other labs.
 piApprox = myIntegral;
 for otherLab = 2:numlabs
 piApprox = piApprox + labReceive(otherLab);
 end
else
 % Send the integral contribution to lab 1.
2-41

2 Programming Distributed and Parallel Applications

2-4
 piApprox = [];
 labSend(myIntegral, 1);
end

Coding in the Client
To create a job for the mpiexec scheduler, first use findResource to find the
scheduler and create a scheduler object. Then set the scheduler object
properties with values appropriate for your network configuration.

sched = findResource('scheduler', 'type', 'mpiexec');
set(sched,'SubmitArguments', ['-phrase MATLAB -noprompt ' ...
 '-machinefile MyListOfNodes -pwdfile MyLoginFile']);

Create a parallel job.

pjob = createParallelJob(sched);

Set the number of workers for the job to run on. This example uses exactly four
workers, but you can use any number of workers that are simultaneously
available to you.

set(pjob, 'MaximumNumberOfWorkers', 4);
set(pjob, 'MinimumNumberOfWorkers', 4);

Define the task of the parallel job with createTask. You create only one task,
but the toolbox duplicates it to run simultaneously on all the workers (labs).

The file quadpi.m must be available to all the workers. It could be passed in the
job’s FileDependencies property, but in this example it is in a directory on the
path of each of the workers, so the client code shown here does not have to
mention the file or its location. Note that the task returns only one argument
(the value of its portion of the integration), and that it has no input arguments
(the empty cell array).

createTask(pjob, @quadpi, 1, {});

Use submit to run the job.

submit(pjob);

Make the MATLAB client wait for the job to finish before collecting the results.

waitForState(pjob, 'finished');
2

Programming Parallel Jobs
The result consists of the sum of the values from all of the labs, as collected by
lab 1. The example compares its result to the built-in value of pi.

data = getAllOutputArguments(pjob);
piApprox = data{1};
fprintf('pi is approximately %.15f.\n', piApprox);
fprintf('Error is %g.\n', abs(pi - piApprox));

Further Notes on Parallel Jobs
Though you create only one task for a parallel job, the system creates
additional identical tasks for each worker. So if a parallel job runs on four
workers (labs), when the job is run, the Tasks property of the job will contain
four task objects.

The first task in the job’s Tasks property corresponds to the task run by the lab
whose labindex is 1. If there is some unique code for one of the labs, or if you
need to be able to identify the results from a particular lab, you should use
labindex == 1 for that purpose.

For other labs, there is no correspondence to the sequence of objects in the
Tasks property and the labindex value of the labs. However, the order of those
tasks in the Tasks property does correspond to the sequence of results in the
OutputArguments property and with those returned by the
getAllOutputArguments function.
2-43

2 Programming Distributed and Parallel Applications

2-4
Programming with User Configurations
Configurations allow you to define certain parameters and properties in an
M-file, then have that file provide your settings when creating objects in the
MATLAB client. The functions that support the use of configurations are

• createJob

• createParallelJob
• createTask

• dfeval

• dfevalasync
• findResource
• set

The following sections describe how to define and apply user configurations:

• “Defining Configurations” on page 2-44

• “Applying Configurations in Client Code” on page 2-45

Defining Configurations
The Distributed Computing Toolbox includes a file called
$MATLAB/toolbox/distcomp/user/distcompUserConfig.m. To use
configurations, you should copy this file to a directory that is higher on your
MATLAB path than $MATLAB/toolbox/distcomp/user, and edit your copy so
that it accurately reflects your scheduler and how you want to run your jobs.

The file contains configurations for each type of scheduler supported by the
toolbox. Each configuration takes the name of the subfunction in which it is
defined. For each configuration, there are listed several parameters or
properties that you can set, arranged by object type. You can also add your own
configuration to the file by following the instructions included in the file.

Example — Setting Properties in the User Configuration File
Suppose you want to set several properties for a job being run by a job manager.
In the distcompUserConfig.m file, you edit the configuration called
jobmanager.

Find the section of the file identified by the line

function conf = jobmanager()
4

Programming with User Configurations
In that section is a block of code that reads

 % Job properties
 conf.job.PathDependencies = {};
 conf.job.FileDependencies = {};
 % The following job properties are specific to the job manager
 conf.job.RestartWorker = false;
 conf.job.MaximumNumberOfWorkers = inf;
 conf.job.MinimumNumberOfWorkers = 1;
 conf.job.Timeout = inf;

To set the maximum and minimum number of workers and the timeout for a
job, edit the last three line in this section. For example,

 conf.job.MaximumNumberOfWorkers = 4;
 conf.job.MinimumNumberOfWorkers = 4;
 conf.job.Timeout = 180;

When this configuration is applied to a job object, the job will run only on 4
workers, and have a timeout of 3 minutes.

Applying Configurations in Client Code
In the MATLAB client where you create and define your distributed computing
objects, you can use configurations when creating the objects, or you can apply
configurations to objects that already exist.

Finding Schedulers
When calling the findResource function, you can use configurations to identify
a particular scheduler. For example,

jm = findResource('scheduler','configuration','jobmanager')

This command finds the scheduler defined by the settings of the jobmanager
configuration in the distcompUserConfig.m file. The advantage of
configurations is that you can alter your schedule choices without changing
your MATLAB application code. To accommodate different schedulers, the file
includes configurations called jobmanager, lsf, mpiexec, and generic. You can
also add your own configurations to the file.
2-45

2 Programming Distributed and Parallel Applications

2-4
For third-party schedulers, settable object properties can be defined in the
configuration and applied after findResource has created the scheduler object.
For example,

lsfsched = findResource('scheduler', 'type', 'lsf');
set (lsfsched, 'configuration', 'lsf');

Properties applied to the lsfsched object are defined in the section of the
configuration file that begins with the lines

function conf = lsf()
%LSF Return a sample configuration for an LSF cluster.

Setting Job and Task Properties
You can set the properties of a job or task with configurations when you create
the objects, or you can apply a configuration after you create the object. The
following code creates and configures two jobs with the same property values.

job1 = createJob(jm,'Configuration','jobmanager')
job2 = createJob(jm)
set(job2,'Configuration','jobmanager')

Notice that the Configuration property of a job indicates the configuration
that was applied to the job.

get(job1,'Configuration')
 jobmanager

When you apply a configuration to an object, all the properties defined in that
configuration section of the distcompUserConfig.m file get applied to the
object, and the object’s Configuration property is set to reflect the name of the
configuration that you applied. If you later change any of the job’s properties
that had been set by that configuration, the job’s configuration property is
cleared.
6

Programming with User Configurations
Writing Scheduler-Independent Jobs
Because the properties of scheduler, job, and task objects can be defined in a
configuration file, you do not have to define them in your application.
Therefore, the code itself can accommodate any type of scheduler. For example,

sched = findResource('scheduler','configuration', 'MyConfig');
set(sched, 'Configuration', 'MyConfig');
job1 = createJob(sched, 'Configuration', 'MyConfig');
createTask(..., 'Configuration', 'MyConfig');

In the configuration file, the configuration defined as MyConfig must define
any and all properties necessary and appropriate for your scheduler and
configuration, and the configuration must not include any parameters
inconsistent with your setup. All changes necessary to use a different scheduler
or different kind of scheduler can now be made in the configuration, without
any modification needed in the application.
2-47

2 Programming Distributed and Parallel Applications

2-4
Programming Tips and Notes
This section provides programming tips that might enhance your program
performance.

Saving or Sending Objects
Do not use the save or load functions on Distributed Computing Toolbox
objects. Some of the information that these objects require is stored in the
MATLAB session persistent memory and would not be saved to a file.

Similarly, you cannot send a distributed computing object between distributed
computing processes by means of an object’s properties. For example, you
cannot pass a job manager, job, task, or worker object to MATLAB workers as
part of a job’s JobData property.

Current Working Directory of MATLAB Worker
The current directory of a MATLAB worker at the beginning of its session is

CHECKPOINTBASE\HOSTNAME_WORKERNAME_mlworker_log\work

where CHECKPOINTBASE is defined in the mdce_def file, HOSTNAME is the name of
the node on which the worker is running, and WORKERNAME is the name of the
MATLAB worker session.

For example, if the worker named worker22 is running on host nodeA52, and
its CHECKPOINTBASE value is C:\TEMP\MDCE\Checkpoint, the starting current
directory for that worker session is

C:\TEMP\MDCE\Checkpoint\nodeA52_worker22_mlworker_log\work

Using clear functions
Executing

clear functions

clears all Distributed Computing Toolbox objects from the current MATLAB
session. They still remain in the job manager. For information on recreating
these objects in the client session, see “Recovering Objects” on page 2-16.
8

Programming Tips and Notes
Running Tasks That Call Simulink
The first task that runs on a worker session that uses Simulink® can take a
long time to run, as Simulink is not automatically started at the beginning of
the worker session. Instead, Simulink starts up when first called. Subsequent
tasks on that worker session will run faster, unless the worker is restarted
between tasks.

Using the pause Function
On worker sessions running on Macintosh or UNIX machines, pause(inf)
returns immediately, rather than pausing. This is to prevent a worker session
from hanging when an interrupt is not possible.

Transmitting Large Amounts of Data
Operations that involve transmitting many objects or large amounts of data
over the network can take a long time. For example, getting a job’s Tasks
property or the results from all of a job’s tasks can take a long time if the job
contains many tasks.

Interrupting a Job
Because jobs and tasks are run outside the client session, you cannot use
Ctrl+C (^C) in the client session to interrupt them. To control or interrupt the
execution of jobs and tasks, use such functions as cancel, destroy, demote,
promote, pause, and resume.

IPv6 on Macintosh
To allow multicast access between different distributed computing processes
run by different users on the same Macintosh computer, IPv6 addressing is
disabled for MATLAB with the Distributed Computing Toolbox on a
Macintosh.
2-49

2 Programming Distributed and Parallel Applications

2-5
Speeding Up a Job
You might find that your code runs slower on multiple workers than it does on
one desktop computer. This can occur when task startup and stop time is not
negligible relative to the task run time. The most common mistake in this
regard is to make the tasks too small, i.e., too fine-grained. Another common
mistake is to send large amounts of input or output data with each task. In both
of these cases, the time it takes to transfer data and initialize a task is far
greater than the actual time it takes for the worker to evaluate the task.
0

Troubleshooting and Debugging
Troubleshooting and Debugging

Object Data Size Limitations
By default, the size limit of data transfers among the distributed computing
objects is approximately 50 MB, determined by the Java Virtual Machine
(JVM) memory allocation limit. You can increase the amount of JVM memory
available to the distributed computing processes (clients, job manager, and
workers).

MATLAB Clients and Workers
You can find the current maximum JVM memory limit by typing the command

java.lang.Runtime.getRuntime.maxMemory
ans =
 98172928

MATLAB clients and MATLAB workers allow up to approximately half of the
JVM memory limit for large data transfers. In the default case, half of the
approximately 100-MB limit is about 50 MB.

To increase the limit, create a file named java.opts that includes the -Xmx
option, specifying the amount of memory you want to give the JVM.

For example, to increase the JVM memory allocation limit to 200 MB, use the
following syntax in the java.opts file:

-Xmx200m

This increased limit allows approximately 100 MB of data to be transferred
with distributed computing objects.

Note To avoid virtual memory thrashing, never set the -Xmx option to more
than 66% of the physical RAM available.

For MATLAB clients on UNIX or Macintosh systems, place the java.opts file
in a directory where you intend to start MATLAB, and move to that directory
before starting MATLAB.

For MATLAB clients on Windows systems
2-51

2 Programming Distributed and Parallel Applications

2-5
1 Create the java.opts file in a directory where you intend to start MATLAB.

2 Create a shortcut to MATLAB.

3 Right-click the shortcut and select Properties.

4 In the Properties dialog box, specify the name of the directory in which you
created the java.opts file as the MATLAB startup directory.

For computers running MATLAB workers, place the modified java.opts file in

$MATLAB/toolbox/distcomp/bin (for UNIX or Macintosh)
$MATLAB\toolbox\distcomp\bin\win32 (for Windows)

Job Managers
For job managers, the Java memory allocation limit is set in the mdce_def file.

This file can be found at

$MATLAB/toolbox/distcomp/bin/mdce_def.sh (for UNIX or Macintosh)
$MATLAB\toolbox\distcomp\bin\win32\mdce_def.bat (for Windows)

The parameter in this file controlling the Java memory limit is
JOB_MANAGER_MAXIMUM_MEMORY. You should set this limit to 4 times the value
you need for data transfers in your job. For example, to accommodate data
transfers of 100 MB, modify the line for UNIX or Macintosh to read

JOB_MANAGER_MAXIMUM_MEMORY="400m"

Or for Windows, to read

set JOB_MANAGER_MAXIMUM_MEMORY=400m

Note Although you can increase the amount of data that you can transfer
between objects, it is probably more efficient to have the distributed
computing processes directly access large data sets in a shared file system.
See “Directly Accessing Files” on page 2-14.
2

Troubleshooting and Debugging
File Access and Permissions

Ensuring that Windows Workers Can Access Files
By default, a worker on a Windows node is installed as a service running as
LocalSystem, so it does not have access to mapped network drives.

Often a network is configured to not allow services running as LocalSystem to
access UNC or mapped network shares. In this case, you must run MDCE
under a different user with rights to log on as a service. See the section “Setting
the User” in the MATLAB Distributed Computing Engine System
Administrator’s Guide.

Task Function Unavailable
If a worker cannot find the task function, it returns the error message

Error using ==> feval
 Undefined command/function 'function_name'.

The worker that ran the task did not have access to the function
function_name. One solution is to make sure the location of the function’s file,
function_name.m, is included in the job’s PathDependencies property. Another
solution is to transfer the function file to the worker by adding
function_name.m to the FileDependencies property of the job.

Load and Save Errors
If a worker cannot save or load a file, you might see the error messages

??? Error using ==> save
Unable to write file myfile.mat: permission denied.
??? Error using ==> load
Unable to read file myfile.mat: No such file or directory.

In determining the cause of this error, consider the following questions:

• What is the worker’s current directory?

• Can the worker find the file or directory?

• What user is the worker running as?

• Does the worker have permission to read or write the file in question?
2-53

2 Programming Distributed and Parallel Applications

2-5
Tasks or Jobs Remain in Queued State
A job or task might get stuck in the queued state. To investigate the cause of
this problem, look for the scheduler's logs:

• LSF might send e-mails with error messages.

• An mpiexec scheduler saves output messages in its debug log.

• If using a generic scheduler, make sure the submit function redirects error
messages to a log file.

Possible causes of the problem are

• MATLAB failed to start due to licensing errors, is not on the default path on
the worker, or is not installed in the location where the scheduler expected it
to be.

• MATLAB could not read/write the job input/output files in the scheduler’s
data location. The data location may not be accessible to all the worker
nodes, or the user that MATLAB runs as does not have permission to
read/write the job files.

• If using a generic scheduler

- The environment variable MDCE_DECODE_FUNCTION was not defined before
the MATLAB worker started.

- The decode function was not on the worker’s path.

• If using mpiexec

- The passphrase to smpd was incorrect or missing.

- The smpd daemon was not running on all the specified machines.

No Results from Job

Task Errors
If your job returned no results (i.e., getAllOutputArguments(job) returns an
empty cell array), it is probable that the job failed and some of its tasks have
their ErrorMessage and ErrorIdentifier properties set.

You can use the MATLAB property inspector to search for these tasks.

 inspect(yourjob);
4

Troubleshooting and Debugging
Alternatively, you can use the following code to identify tasks with error
messages:

 errmsgs = get(yourjob.Tasks, {'ErrorMessage'});
 nonempty = ~cellfun(@isempty, errmsgs);
 celldisp(errmsgs(nonempty));

This code displays the nonempty error messages of the tasks found in the job
object yourjob.

Connection Problems Between Client and Job
Manager
Detailed instructions for diagnosing connection problems between the client
and job manager can be found in some of the Bug Reports listed on the
MathWorks Web site. The following sections can help you identify the general
nature of some connection problems.

Client Cannot See Job Manager
If you cannot locate your job manager with

findResource('scheduler','type','jobmanager')

the most likely reasons for this failure are

• The client cannot contact the job manager host via multicast. Try to fully
specify where to look for the job manager by using the LookupURL property in
your call to findResource:
findResource('scheduler','type','jobmanager', ...
 'LookupURL','JobMgrHostName')

• The job manager is currently not running.

• Firewalls do not allow traffic from the client to the job manager.

• The client and the job manager are not running the same version of the
software.
2-55

2 Programming Distributed and Parallel Applications

2-5
Job Manager Cannot See Client
If findResource displays a warning message that the job manager cannot open
a TCP connection to the client computer, the most likely reasons for this are

• Firewalls do not allow traffic from the job manager to the client.

• The job manager cannot resolve the short hostname of the client computer.
Use dctconfig to change the hostname that the job manager will use for
contacting the client.
6

3

Function Reference

This chapter describes the Distributed Computing Toolbox M-file functions that you use directly to
evaluate MATLAB code in a cluster of computers.

Functions — By Category
(p. 3-2)

Contains a series of tables that group functions by category

Functions — Alphabetical
List (p. 3-6)

Lists all the functions alphabetically

3 Function Reference

3-2
Functions — By Category

General Toolbox Functions

General Toolbox
Functions

Distributed Computing Toolbox functions not
specific to a particular object type

Job Manager Functions Functions that operate on a job manager object

Scheduler Functions Functions that operate on a scheduler object that
is not a job manager

Job Functions Functions that operate on a job object

Task Functions Functions that operate on a task object

Toolbox Functions Used
in Parallel Jobs

Functions that are meaninful only within a
parallel job

Toolbox Functions Used
in MATLAB Workers

Functions that are meaningful only within a
MATLAB worker session

clear Remove objects from MATLAB workspace

dctconfig Configure settings for Distributed Computing
Toolbox client session

dfeval Evaluate function using cluster

dfevalasync Evaluate function asynchronously using cluster

findResource Find available distributed computing resources

get Object properties

help Help for toolbox functions in Command Window

inspect Open Property Inspector

jobStartup M-file for user-defined options to run when job
starts

length Length of object array

methods List functions of object class

set Configure or display object properties

Functions — By Category
Job Manager Functions

Scheduler Functions

size Size of object array

taskFinish M-file for user-defined options to run when task
finishes

taskStartup M-file for user-defined options to run when task
starts

createJob Create job object

createParallelJob Create parallel job object

demote Demote job in job manager queue

findJob Find job objects stored in scheduler

pause Pause job manager queue

promote Promote job in job manager queue

resume Resume processing queue in job manager

createJob Create job object in scheduler and client

createParallelJob Create parallel job object

getDebugLog Read output messages from parallel job run by
mpiexec scheduler

mpiLibConf Location of MPI implementation

mpiSettings Configure options for MPI communication
3-3

3 Function Reference

3-4
Job Functions

Task Functions

Toolbox Functions Used in Parallel Jobs

cancel Cancel job or task

createTask Create new task in job

destroy Remove job or task object from its parent and
memory

findTask Task objects belonging to job object

getAllOutputArguments Output arguments from all tasks evaluated in job
object

submit Queue job in scheduler

waitForState Wait for object to change state

cancel Cancel job or task

destroy Remove job or task object from its parent and
memory

waitForState Wait for object to change state

gop Global operation across all labs

labBarrier Block execution until all labs have reached this call

labBroadcast Send data to all labs or receive data sent to all labs

labindex Index of this lab

labProbe Test to see if messages are ready to be received
from other lab

labReceive Receive data from another lab

labSend Send data to another specified lab

numlabs Total number of labs operating in parallel on
current job

Functions — By Category
Toolbox Functions Used in MATLAB Workers
getCurrentJob Job object whose task is currently being evaluated

getCurrentJobmanager Get job manager object that distributed current
task

getCurrentTask Task object currently being evaluated in this
worker session

getCurrentWorker Worker object currently running this session
3-5

3 Function Reference

3-6
Functions — Alphabetical List
This section contains detailed descriptions of the Distributed Computing
Toolbox functions. Each function reference page contains some or all of the
following information:

• The function name

• The function purpose

• The function syntax

Valid input argument and output argument combinations are shown. In
some cases, an ellipsis (. . .) is used for the input arguments. This means that
all preceding input argument combinations are valid for the specified output
argument(s).

• A description of each argument

• A description of each function syntax

• Additional remarks about usage

• An example of usage

• Related functions and properties

cancel
3cancelPurpose Cancel task or job

Syntax cancel(t)
cancel(j)

Arguments

Description cancel(t) stops the task object, t, that is currently in the pending or running
state. The task’s State property is set to finished, and no output arguments
are returned. An error message stating that the task was canceled is placed in
the task object’s ErrorMessage property, and the worker session running the
task is restarted.

cancel(j) stops the job object, j, that is pending, queued, or running. The job’s
State property is set to finished, and a cancel is executed on all tasks in the
job that are not in the finished state. A job object that has been canceled
cannot be started again.

If the job is running in a job manager, any worker sessions that are evaluating
tasks belonging to the job object will be restarted.

Example Cancel a task. Note afterward the task’s State, ErrorMessage, and
OutputArguments properties.

job1 = createJob(jm);
t = createTask(job1, @rand, 1, {3,3});
cancel(t)
get(t)
 ID: 1
 Function: @rand
 NumberOfOutputArguments: 1
 InputArguments: {[3] [3]}
 OutputArguments: {1x0 cell}
 CaptureCommandWindowOutput: 0
 CommandWindowOutput: ''
 State: 'finished'
 ErrorMessage: 'Task cancelled by user'
 ErrorIdentifier: 'dce:task:cancelled'

t Pending or running task to cancel.

j Pending, running, or queued job to cancel.
3-7

cancel
 Timeout: Inf
 CreateTime: 'Fri Oct 22 11:38:39 EDT 2004'
 StartTime: 'Fri Oct 22 11:38:46 EDT 2004'
 FinishTime: 'Fri Oct 22 11:38:46 EDT 2004'
 Worker: []
 Parent: [1x1 distcomp.job]
 UserData: []
 RunningFcn: []
 FinishedFcn: []

See Also destroy, submit
3-8

clear
3clearPurpose Remove objects from MATLAB workspace

Syntax clear obj

Arguments

Description clear obj removes obj from the MATLAB workspace.

Remarks If obj references an object in the job manager, it is cleared from the workspace,
but it remains in the job manager. You can restore obj to the workspace with
the findResource, findJob, or findTask function; or with the Jobs or Tasks
property.

Example This example creates two job objects on the job manager jm. The variables for
these job objects in the MATLAB workspace are job1 and job2. job1 is copied
to a new variable, job1copy; then job1 and job2 are cleared from the MATLAB
workspace. The job objects are then restored to the workspace from the job
object’s Jobs property as j1 and j2, and the first job in the job manager is
shown to be identical to job1copy, while the second job is not.

job1 = createJob(jm);
job2 = createJob(jm);
job1copy = job1;
clear job1 job2;
j1 = jm.Jobs(1);
j2 = jm.Jobs(2);
isequal (job1copy, j1)
ans =
 1
isequal (job1copy, j2)
ans =
 0

See Also createJob, createTask, findJob, findResource, findTask

obj An object or an array of objects.
3-9

createJob
3createJobPurpose Create job object in scheduler and client

Syntax obj = createJob(scheduler)
obj = createJob(..., 'p1', v1, 'p2', v2, ...)
obj = createJob(..., 'configuration', 'ConfigurationName', ...)

Arguments

Description obj = createJob(scheduler) creates a job object at the data location for the
identified scheduler, or in the job manager.

obj = createJob(..., 'p1', v1, 'p2', v2, ...) creates a job object with
the specified property values. If an invalid property name or property value is
specified, the object will not be created.

Note that the property value pairs can be in any format supported by the set
function, i.e., param-value string pairs, structures, and param-value cell array
pairs. If a structure is used, the structure field names are job object property
names and the field values specify the property values.

If you are using a third-party scheduler instead of a job manager, the job’s data
is stored in the location specified by the job’s DataLocation property.

obj = createJob(..., 'configuration', 'ConfigurationName', ...)
creates a job object with the property values specified in the configuration
ConfigurationName. Configurations are defined in the file
distcompUserConfig.m. For details about writing and applying configurations,
see “Programming with User Configurations” on page 2-44.

obj The job object.

scheduler The job manager object representing the job manager
service that will execute the job, or the scheduler object
representing the scheduler on the cluster that will
distribute the job.

p1, p2 Object properties configured at object creation.

v1, v2 Initial values for corresponding object properties.
3-10

createJob
Example Construct a job object.

jm = findResource('scheduler','type','jobmanager', ...
 'name','MyJobManager','LookupURL','JobMgrHost');
obj = createJob(jm, 'Name', 'testjob');

Add tasks to the job.

for i = 1:10
 createTask(obj, @rand, 1, {10});
end

Run the job.

submit(obj);

Retrieve job results.

out = getAllOutputArguments(obj);

Display the random matrix.

disp(out{1}{1});

Destroy the job.

destroy(obj);

See Also createParallelJob, createTask, findJob, findResource, submit
3-11

createParallelJob
3createParallelJobPurpose Create parallel job object

Syntax pjob = createParallelJob(scheduler)
pjob = createParallelJob(..., 'p1', v1, 'p2', v2, ...)
pjob = createParallelJob(..., 'configuration', 'ConfigurationName')

Arguments

Description pjob = createParallelJob(scheduler) creates a parallel job object at the
data location for the identified scheduler, or in the job manager. Future
modifications to the job object result in a remote call to the job manager or
modification to data at the scheduler’s data location.

pjob = createParallelJob(..., 'p1', v1, 'p2', v2, ...) creates a
parallel job object with the specified property values. If an invalid property
name or property value is specified, the object will not be created.

Note that the property value pairs can be in any format supported by the set
function, i.e., param-value string pairs, structures, and param-value cell array
pairs.

pjob = createParallelJob(..., 'configuration',
'ConfigurationName',...) creates a parallel job object with the property
values specified in the configuration ConfigurationName. Configurations are
defined in the file distcompUserConfig.m. For details about writing and
applying configurations, see “Programming with User Configurations” on
page 2-44.

Example Construct a parallel job object in a job manager queue.

jm = findResource('scheduler','type','jobmanager');
pjob = createParallelJob(jm,'Name','testparalleljob');

Add the task to the job.

pjob The parallel job object.

scheduler The scheduler object created by findResource, using either
a job manager or mpiexec scheduler.

p1, p2 Object properties configured at object creation.

v1, v2 Initial values for corresponding object properties.
3-12

createParallelJob
createTask(pjob, 'rand', 1, {3});

Set the number of workers required for parallel execution.

set(pjob,'MinimumNumberOfWorkers',3);
set(pjob,'MaximumNumberOfWorkers',3);

Run the job.

submit(pjob);

Retrieve job results.

waitForState(pjob);
out = getAllOutputArguments(pjob);

Display the random matrices.

celldisp(out);
out{1} =
 0.9501 0.4860 0.4565
 0.2311 0.8913 0.0185
 0.6068 0.7621 0.8214
out{2} =
 0.9501 0.4860 0.4565
 0.2311 0.8913 0.0185
 0.6068 0.7621 0.8214
out{3} =
 0.9501 0.4860 0.4565
 0.2311 0.8913 0.0185
 0.6068 0.7621 0.8214

Destroy the job.

destroy(pjob);

See Also createJob, createTask, findJob, findResource, submit
3-13

createTask
3createTaskPurpose Create new task in job

Syntax obj = createTask(j, functionhandle, numoutputargs, inputargs)
obj = createTask(..., 'p1',v1,'p2',v2, ...)
obj = createTask(..., 'configuration', 'ConfigurationName', ...)

Arguments

Description obj = createTask(j, functionhandle, numoutputargs, inputargs)
creates a new task object in job j, and returns a reference, obj, to the added
task object.

obj = createTask(..., 'p1',v1,'p2',v2, ...) adds a task object with the
specified property values. If an invalid property name or property value is
specified, the object will not be created.

Note that the property value pairs can be in any format supported by the set
function, i.e., param-value string pairs, structures, and param-value cell array
pairs. If a structure is used, the structure field names are task object property
names and the field values specify the property values.

obj = createTask(..., 'configuration', 'ConfigurationName', ...)

creates a task job object with the property values specified in the configuration
ConfigurationName. Configurations are defined in the file
distcompUserConfig.m. For details about writing and applying configurations,
see “Programming with User Configurations” on page 2-44.

j The job that the task object is created in.

functionhandle A handle to the function that is called when the task is
evaluated.

numoutputargs The number of output arguments to be returned from
execution of the task function.

inputargs A row cell array specifying the input arguments to be
passed to the function functionhandle. Each element in
the cell array will be passed as a separate input
argument.

p1, p2 Task object properties configured at object creation.

v1, v2 Initial values for corresponding task object properties.
3-14

createTask
Example Create a job object.

jm = findResource('scheduler','type','jobmanager', ...
 'name','MyJobManager','LookupURL','JobMgrHost');
j = createJob(jm);

Add a task object to be evaluated that generates a 10-by-10 random matrix.

obj = createTask(j, @rand, 1, {10,10});

Run the job.

submit(j);

Get the output from the task evaluation.

taskoutput = get(obj, 'OutputArguments');

Show the 10-by-10 random matrix.

disp(taskoutput{1});

See Also createJob
3-15

dctconfig
3dctconfigPurpose Configure settings for Distributed Computing Toolbox client session

Syntax dctconfig('p1', v1, ...)
config = dctconfig('p1', v1, ...)

Arguments

Description dctconfig('p1', v1, ...) sets the client configuration property p1 with the
value v1.

Note that the property value pairs can be in any format supported by the set
function, i.e., param-value string pairs, structures, and param-value cell array
pairs. If a structure is used, the structure field names are the property names
and the field values specify the property values.

If the property is 'port', the specified value is used to set the port for the client
session of the Distributed Computing Toolbox. This is useful in environments
where the choice of ports is limited. By default, the client session uses a random
port to communicate with the other sessions of the MATLAB Distributed
Computing Engine. In networks where you are required to use specific ports,
you use dctconfig to set the client’s port.

If the property is 'hostname', the specified value is used to set the hostname
for the client session of the Distributed Computing Toolbox. This is useful when
the client computer is known by more than one hostname. The value you
should use is the hostname by which the cluster nodes can contact the client
computer. You can find the default value by calling dctconfig without any
input arguments before any values have been set.

config = dctconfig('p1', v1, ...) returns a structure to config. The field
names of the structure reflect the property names, while the field values are
set to the property values.

p1 Property to configure. Supported properties are 'port'
and 'hostname'.

v1 Value for corresponding property.

config Structure of configuration value.
3-16

dctconfig
Example View the current settings for hostname and port.

config = dctconfig
config =
 port: 0
 hostname: 'machine32'

Set the current client session port number to 21000 with hostname fdm4.

dctconfig('hostname', 'fdm4','port', 21000');
3-17

demote
3demotePurpose Demote job in job manager queue

Syntax demote(jm, job)

Arguments

Description demote(jm, job) demotes the job object job that is queued in the job manager
jm.

If job is not the last job in the queue, demote exchanges the position of job and
the job that follows it in the queue.

See Also createJob, findJob, promote, submit

jm The job manager object that contains the job.

job Job object to be demoted in the job queue.
3-18

destroy
3destroyPurpose Remove job or task object from its parent and memory

Syntax destroy(obj)

Arguments

Description destroy(obj) removes the job object reference or task object reference obj
from the local session, and removes the object from the job manager memory.
When obj is destroyed, it becomes an invalid object. You can remove an invalid
object from the workspace with the clear command.

If multiple references to an object exist in the workspace, destroying one
reference to that object invalidates all the remaining references to it. You
should remove these remaining references from the workspace with the clear
command.

The task objects contained in a job will also be destroyed when a job object is
destroyed. This means that any references to those task objects will also be
invalid.

Remarks Because its data is lost when you destroy an object, destroy should be used
after output data has been retrieved from a job object.

Example Destroy a job and its tasks.

jm = findResource('scheduler','type','jobmanager', ...
 'name','MyJobManager','LookupURL','JobMgrHost');
j = createJob(jm, 'Name', 'myjob');
t = createTask(j, @rand, 1, {10});
destroy(j);
clear t
clear j

Note that task t is also destroyed as part of job j.

See Also createJob, createTask

obj Job or task object deleted from memory.
3-19

dfeval
3dfevalPurpose Evaluate function using cluster

Syntax [y1,...,ym] = dfeval(F, x1,...,xn)
[y1,...,ym] = dfeval(F, x1,...,xn, 'P1', V1, 'P2', V2,...)
[y1,...,ym] = dfeval(F, x1,...,xn, ...

 'configuration', 'ConfigurationName',...)

Arguments

Description [y1,...,ym] = dfeval(F, x1,...,xn) performs the equivalent of an feval
in a cluster of machines using the Distributed Computing Toolbox. dfeval
evaluates the function F, with arguments provided in the cell arrays
x1,...,xn. F can be a function handle, a function name, or a cell array of
function handles/function names where the length of the cell array is equal to
the number of tasks to be executed. x1,...,xn are the inputs to the function F,
specified as cell arrays in which the number of elements in the cell array equals
the number of tasks to be executed. The first task evaluates function F using
the first element of each cell array as input arguments; the second task uses
the second element of each cell array, and so on. The sizes of x1,...,xn must
all be the same.

The results are returned to y1,..,ym, which are column-based cell arrays, each
of whose elements corresponds to each task that was created. The number of
cell arrays (m) is equal to the number of output arguments returned from each
task. For example, if the job has 10 tasks that each generate three output
arguments, the results of dfeval will be three cell arrays of 10 elements each.

y = dfeval(..., 'P1', V1, 'P2', V2,...) accepts additional arguments
for configuring different properties associated with the job. Valid properties
and property values are

F Function name, function handle, or cell array of function
names or handles.

x1,...,xn Cell arrays of input arguments to the functions.

y1,...,ym Cell arrays of output arguments; each element of a cell
array corresponds to each task of the job.

'P1', V1,
'P2', V2,...

Property name/property value pairs for the created job
object; can be name/value pairs or structures.
3-20

dfeval
• Job object property value pairs, specified as name/value pairs or structures.
(Properties of other object types, such as scheduler, task, or worker objects
are not permitted. Use a configuration to set scheduler and task properties.)

• 'JobManager','JobManagerName'. This specifies the job manager on which
to run the job. If you do not use this property to specify a job manager, the
default is to run the job on the first job manager returned by findResource.

• 'LookupURL','host:port'. This makes a unicast call to the job manager
lookup service at the specified host and port. The job managers available for
this job are those accessible from this lookup service. For more detail, see the
description of this option on the findResource reference page.

• 'StopOnError',true|{false}. You may also set the value to logical 1 (true)
or 0 (false). If true (1), any error that occurs during execution in the cluster
will cause the job to stop executing. The default value is 0 (false), which
means that any errors that occur will produce a warning but will not stop
function execution.

[y1,...,ym] = dfeval(F, x1,...,xn, ...
'configuration', 'ConfigurationName',...) evaluates the function F in a
cluster by using all the properties defined in the configuration
ConfigurationName. The configuration settings are used to find and initialize
a scheduler, create a job, and create tasks. Configurations are defined in the
file distcompUserConfig.m. For details about writing and applying
configurations, see “Programming with User Configurations” on page 2-44.
Note that configurations enable you to use dfeval with any type of scheduler.

Example Create three tasks that return a 1-by-1, a 2-by-2, and a 3-by-3 random matrix.

y = dfeval(@rand,{1 2 3})
y =
 [0.9501]
 [2x2 double]
 [3x3 double]

Create two tasks that return random matrices of size 2-by-3 and 1-by-4.

y = dfeval(@rand,{2 1},{3 4});
y{1}
ans =
 0.8132 0.1389 0.1987
3-21

dfeval
 0.0099 0.2028 0.6038
y{2}
ans =
 0.6154 0.9218 0.1763 0.9355

Create two tasks, where the first task creates a 1-by-2 random array and the
second task creates a 3-by-4 array of zeros.

y = dfeval({@rand @zeros},{1 3},{2 4});
y{1}
ans =
 0.0579 0.3529
y{2}
ans =
 0 0 0 0
 0 0 0 0
 0 0 0 0

Create five random 2-by-4 matrices using MyJobManager to execute tasks,
where the tasks time out after 10 seconds, and the function will stop if an error
occurs while any of the tasks are executing.

y = dfeval(@rand,{2 2 2 2 2},{4 4 4 4 4}, ...
'JobManager','MyJobManager','Timeout',10,'StopOnError',true);

See Also dfevalasync, feval, findResource
3-22

dfevalasync
3dfevalasyncPurpose Evaluate function asynchronously using cluster

Syntax Job = dfevalasync(F, numArgOut, x1,...,xn, 'P1', V1, 'P2', V2,...)
Job = dfeval(F, numArgOut, x1,...,xn, ...

 'configuration', 'ConfigurationName',...)

Arguments

Description Job = dfevalasync(F, numArgOut, x1,...,xn, 'P1', V1, 'P2', V2,...)
is equivalent to dfeval, except it returns immediately with a single output
argument containing the job object that it has created and sent to the cluster.

Job = dfeval(F, numArgOut, x1,...,xn, ...
'configuration', 'ConfigurationName',...) evaluates the function F in a
cluster by using all the properties defined in the configuration
ConfigurationName. The configuration settings are used to find and initialize
a scheduler, create a job, and create tasks. Configurations are defined in the
file distcompUserConfig.m. For details about writing and applying
configurations, see “Programming with User Configurations” on page 2-44.
Note that configurations enable you to use dfeval with any type of scheduler.

Example Execute a sum function distributed in three tasks.

job = dfevalasync(@sum,1,{[1,2],[3,4],[5,6]}, ...
 'jobmanager','MyJobManager');

When the job is finished, you can obtain the results associated with the job.

waitForState(job);
data = getAllOutputArguments(job)

Job Job object created to evaluation the function.

F Function name, function handle, or cell array of function
names or handles.

numArgOut Number of output arguments from each task’s execution
of function F.

x1,...,xn Cell arrays of input arguments to the functions.

'P1', V1,
'P2', V2,...

Property name/property value pairs for the created job
object; can be name/value pairs or structures.
3-23

dfevalasync
data =
 [3]
 [7]
 [11]

data is an M-by-numArgOut cell array, where M is the number of tasks.

See Also dfeval, feval, getAllOutputArguments, waitForState
3-24

findJob
3findJobPurpose Find job objects stored in scheduler

Syntax out = findJob(jm)
[pending queued running finished] = findJob(jm)
out = findJob(jm, 'p1', v1, 'p2', v2,...)

Arguments

Description out = findJob(jm) returns an array, out, of all job objects stored in the
scheduler jm. Jobs in the array will be ordered by State in the following order:
'pending', 'queued', 'running', 'finished'; within the 'queued' state, jobs
are listed in the order in which they are queued.

[pending queued running finished] = findJob(jm) returns arrays of all
job objects stored in the scheduler jm, by state. Jobs in the array queued will be
in the order in which they are queued, with the job at queued(1) being the next
to execute.

out = findJob(jm, 'p1', v1, 'p2', v2,...) returns an array, out, of job
objects whose property names and property values match those passed as
parameter-value pairs, p1, v1, p2, v2.

Note that the property value pairs can be in any format supported by the set
function, i.e., param-value string pairs, structures, and param-value cell array
pairs. If a structure is used, the structure field names are job object property
names and the field values are the appropriate property values to match.

jm Scheduler object in which to find the job.

pending Array of jobs in scheduler jm whose State is pending.

queued Array of jobs in scheduler jm whose State is queued.

running Array of jobs in scheduler jm whose State is running.

finished Array of jobs in scheduler jm whose State is finished.

out Array of jobs found in scheduler jm.

p1, p2 Job object properties to match.

v1, v2 Values for corresponding object properties.
3-25

findJob
Jobs in the queued state are returned in the same order as they appear in the
job queue service.

When a property value is specified, it must use the same exact value that the
get function returns, including letter case. For example, if get returns the Name
property value as MyJob, then findJob will not find that object while searching
for a Name property value of myjob.

See Also createJob, findResource, findTask, submit
3-26

findResource
3findResourcePurpose Find available distributed computing resources

Syntax out = findResource('scheduler','type','SchedType')
out = findResource('scheduler','type','jobmanager', ...

'LookupURL','host:port')
out = findResource('scheduler','type','SchedType', ..., 'p1', v1,

'p2', v2,...)
out = findResource('scheduler', ...

 'configuration', 'ConfigurationName')
out = findResource('worker')
out = findResource('worker','LookupURL','host:port')
out = findResource('worker', ..., 'p1', v1, 'p2', v2,...)

Arguments out Object or array of objects returned.

'scheduler' Literal string specifying that you are finding a
scheduler, which can be a job manager or a
third-party scheduler.

'SchedType' Specifies the type of scheduler: 'jobmanager',
'LSF', 'mpiexec', or any string that starts with
'generic'.

'worker' Literal string specifying that you are finding a
worker.

'LookupURL' Literal string to indicate usage of a remote lookup
service.

'host:port' Host name and (optionally) port of remote lookup
service to use.

p1, p2 Object properties to match.

v1, v2 Values for corresponding object properties.

'configuration' Literal string to indicate usage of a configuration.

'ConfigurationName' Name of configuration to use, defined in
distcompUserConfig.m.
3-27

findResource
Description out = findResource('scheduler','type','SchedType')
out = findResource('worker') return an array, out, containing objects
representing all available distributed computing schedulers of the given type,
or workers. SchedType can be 'jobmanager', 'LSF', 'mpiexec', or any string
starting with 'generic'. You can use different scheduler types starting with
'generic' to identify one generic scheduler or configuration from another. For
third-party schedulers, job data is stored in the location specified by the
scheduler object’s DataLocation property.

out = findResource('scheduler','type','jobmanager', ...
 'LookupURL','host:port')
out = findResource('worker','LookupURL','host:port') use the lookup
process of the job manager running at a specific location. The lookup process is
part of a job manager. By default, findResource uses all the lookup processes
that are available to the local machine via multicast. If you specify
'LookupURL' with a host, findResource uses the job manager lookup process
running at that location. The port is optional, and is only necessary if the
lookup process was configured to use a port other than the default BASEPORT
setting of the mdce_def file. This URL is where the lookup is performed from,
it is not necessarily the host running the job manager or worker. This unicast
call is useful when you want to find resources that might not be available via
multicast or in a network that does not support multicast. For more
information about which ports these processes use, see “Setting TCP Ports” in
the MATLAB Distributed Computing Engine System Administrator’s Guide.

Note LookupURL is ignored when finding third-party schedulers.

out = findResource(... ,'p1', v1, 'p2', v2,...) returns an array, out,
of resources whose property names and property values match those passed as
parameter-value pairs, p1, v1, p2, v2.

Note that the property value pairs can be in any format supported by the set
function.

When a property value is specified, it must use the same exact value that the
get function returns, including letter case. For example, if get returns the Name
property value as 'MyJobManager', then findResource will not find that object
if searching for a Name property value of 'myjobmanager'.
3-28

findResource
out = findResource('scheduler', ...
'configuration', 'ConfigurationName') returns an array, out, of
schedulers whose property names and property values match those defined by
the parameters in the configuration ConfigurationName. Configurations are
defined in the file distcompUserConfig.m. For details about writing and
applying configurations, see “Programming with User Configurations” on
page 2-44.

Remarks Note that it is permissible to use parameter-value string pairs, structures,
parameter-value cell array pairs, and configurations in the same call to
findResource.

Example Find a particular job manager by its name and host.

jm1 = findResource('scheduler','type','jobmanager', ...
 'Name', 'ClusterQueue1');

Find all job managers. In this example, there are four.

all_job_managers = findResource('scheduler','type','jobmanager')
all_job_managers =
 distcomp.jobmanager: 1-by-4

Find all job managers accessible from the lookup service on a particular host.

jms = findResource('scheduler','type','jobmanager', ...
 'LookupURL','host234');

Find a particular job manager accessible from the lookup service on a
particular host. In this example, subnet2.hostalpha port 6789 is where the
lookup is performed, but the job manager named SN2Jmgr might be running on
another machine.

jm = findResource('scheduler','type','jobmanager', ...
 'LookupURL', 'subnet2.hostalpha:6789', 'Name', 'SN2JMgr');

Find the LSF scheduler on the network.

lsf_sched = findResource('scheduler','type','LSF')

See Also findJob, findTask
3-29

findTask
3findTaskPurpose Task objects belonging to job object

Syntax tasks = findTask(obj)
[pending running finished] = findTask(obj)
tasks = findTask(obj, 'p1', v1, 'p2', v2, ...)

Arguments

Description tasks = findTask(obj) gets a 1-by-N array of task objects belonging to a job
object obj.

[pending running finished] = findTask(obj) returns arrays of all task
objects stored in the job object obj, sorted by state.

tasks = findTask(obj, 'p1', v1, 'p2', v2, ...) gets a 1-by-N array of
task objects belonging to a job object obj. The returned task objects will be only
those having the specified property-value pairs.

Note that the property value pairs can be in any format supported by the set
function, i.e., param-value string pairs, structures, and param-value cell array
pairs. If a structure is used, the structure field names are object property
names and the field values are the appropriate property values to match.

When a property value is specified, it must use the same exact value that the
get function returns, including letter case. For example, if get returns the Name
property value as MyTask, then findTask will not find that object while
searching for a Name property value of mytask.

obj Job object.

tasks Returned task objects.

pending Array of tasks in job obj whose State is pending.

running Array of tasks in job obj whose State is running.

finished Array of tasks in job obj whose State is finished.

p1, p2 Task object properties to match.

v1, v2 Values for corresponding object properties.
3-30

findTask
Remarks If obj is contained in a remote service, findTask will result in a call to the
remote service. This could result in findTask taking a long time to complete,
depending on the number of tasks retrieved and the network speed. Also, if the
remote service is no longer available, an error will be thrown.

Example Create a job object.

jm = findResource('scheduler','type','jobmanager', ...
 'name','MyJobManager','LookupURL','JobMgrHost');
obj = createJob(jm);

Add a task to the job object.

createTask(obj, @rand, 1, {10})

Create the task object t, which refers to the task we just added to obj.

t = findTask(obj)

See Also createJob, createTask, findJob
3-31

get
3getPurpose Object properties

Syntax get(obj)
out = get(obj)
out = get(obj,'PropertyName')

Arguments

Description get(obj) returns all property names and their current values to the command
line for obj.

out = get(obj) returns the structure out where each field name is the name
of a property of obj, and each field contains the value of that property.

out = get(obj,'PropertyName') returns the value out of the property
specified by PropertyName for obj. If PropertyName is replaced by a 1-by-n or
n-by-1 cell array of strings containing property names, then get returns a
1-by-n cell array of values to out. If obj is an array of objects, then out will be
an m-by-n cell array of property values where m is equal to the length of obj
and n is equal to the number of properties specified.

Remarks When specifying a property name, you can do so without regard to case, and
you can make use of property name completion. For example, if jm is a job
manager object, then these commands are all valid and return the same result.

out = get(jm,'HostAddress');
out = get(jm,'hostaddress');
out = get(jm,'HostAddr');

obj An object or an array of objects.

'PropertyName' A property name or a cell array of property names.

out A single property value, a structure of property values,
or a cell array of property values.
3-32

get
Example This example illustrates some of the ways you can use get to return property
values for the job object j1.

get(j1,'State')
ans =
pending

get(j1,'Name')
ans =
MyJobManager_job

out = get(j1);
out.State
ans =
pending

out.Name
ans =
MyJobManager_job

two_props = {'State' 'Name'};
get(j1, two_props)
ans =
 'pending' 'MyJobManager_job'

See Also inspect, set
3-33

getAllOutputArguments
3getAllOutputArgumentsPurpose Output arguments from evaluation of all tasks in job object

Syntax data = getAllOutputArguments(obj)

Arguments

Description data = getAllOutputArguments(obj) returns data, the output data
contained in the tasks of a finished job. If the job has M tasks, each row of the
M-by-N cell array data contains the output arguments for the corresponding
task in the job. Each row has N columns, where N is the greatest number of
output arguments from any one task in the job. The N elements of a row are
arrays containing the output arguments from that task. If a task has less than
N output arguments, the excess arrays in the row for that task are empty. The
order of the rows in data will be the same as the order of the tasks contained
in the job.

Remarks If you are using a job manager, getAllOutputArguments results in a call to a
remote service, which could take a long time to complete, depending on the
amount of data being retrieved and the network speed. Also, if the remote
service is no longer available, an error will be thrown.

Note that issuing a call to getAllOutputArguments will not remove the output
data from the location where it is stored. To remove the output data, use the
destroy function to remove the individual task or their parent job object.

The same information returned by getAllOutputArguments can be obtained by
accessing the OutputArguments property of each task in the job.

Example Create a job to generate a random matrix.

jm = findResource('scheduler','type','jobmanager', ...
 'name','MyJobManager','LookupURL','JobMgrHost');
j = createJob(jm, 'Name', 'myjob');
t = createTask(j, @rand, 1, {10});
submit(j);
data = getAllOutputArguments(j);

obj Job object whose tasks generate output arguments.

data M-by-N cell array of job results.
3-34

getAllOutputArguments
Display the 10-by-10 random matrix.

disp(data{1});
destroy(j);

See Also submit
3-35

getCurrentJob
3getCurrentJobPurpose Job object whose task is currently being evaluated

Syntax job = getCurrentJob

Arguments

Description job = getCurrentJob returns the job object that is the Parent of the task
currently being evaluated by the worker session.

Remarks If the function is executed in a MATLAB session that is not a worker, you get
an empty result.

See Also getCurrentJobmanager, getCurrentTask, getCurrentWorker

job The job object that contains the task currently being
evaluated by the worker session.
3-36

getCurrentJobmanager
3getCurrentJobmanagerPurpose Job manager object that distributed current task

Syntax jm = getCurrentJobmanager

Arguments

Description jm = getCurrentJobmanager returns the job manager object that has sent the
task currently being evaluated by the worker session. jm is the Parent of the
task’s parent job.

Remarks If the function is executed in a MATLAB session that is not a worker, you get
an empty result.

If your tasks are distributed by a third-party scheduler instead of a job
manager, getCurrentJobmanager returns a distcomp.taskrunner object.

See Also getCurrentJob, getCurrentTask, getCurrentWorker

jm The job manager object that distributed the task
currently being evaluated by the worker session.
3-37

getCurrentTask
3getCurrentTaskPurpose Task object currently being evaluated in this worker session

Syntax task = getCurrentTask

Arguments

Description task = getCurrentTask returns the task object that is currently being
evaluated by the worker session.

Remarks If the function is executed in a MATLAB session that is not a worker, you get
an empty result.

See Also getCurrentJob, getCurrentJobmanager, getCurrentWorker

task The task object that the worker session is currently
evaluating.
3-38

getCurrentWorker
3getCurrentWorkerPurpose Worker object currently running this session

Syntax worker = getCurrentWorker

Arguments

Description worker = getCurrentWorker returns the worker object representing the
session that is currently evaluating the task that calls this function.

Remarks If the function is executed in a MATLAB session that is not a worker or if you
are using a third-party scheduler instead of a job manager, you get an empty
result.

Example Create a job with one task, and have the task return the name of the worker
that evaluates it.

jm = findResource('scheduler','type','jobmanager', ...
 'name','MyJobManager','LookupURL','JobMgrHost');
j = createJob(jm);
t = createTask(j, @() get(getCurrentWorker,'Name'), 1, {});
submit(j)
waitForState(j)
get(t,'OutputArgument')
ans =
 'c5_worker_43'

The function of the task t is an anonymous function that first executes
getCurrentWorker to get an object representing the worker that is evaluating
the task. Then the task function uses get to examine the Name property value
of that object. The result is placed in the OutputArgument property of the task.

See Also getCurrentJob, getCurrentJobmanager, getCurrentTask

worker The worker object that is currently evaluating the task
that contains this function.
3-39

getDebugLog
3getDebugLogPurpose Read output messages from parallel job run by mpiexec scheduler

Syntax str = getDebugLog (mpiexec, pjob)

Arguments

Description getDebugLog (mpiexec, job) returns any output written to the standard
output or standard error stream by the job identified by pjob, being run by the
scheduler identified by mpiexec.

See Also findResource, createParallelJob

str Variable to which messages are returned as a string
expression.

mpiexec Scheduler object referring to mpiexec scheduler, created by
findResource.

pjob Object identifying parallel job whose messages you want.
3-40

gop
3gopPurpose Global operation across all labs

Syntax gop(@F, x)

Arguments

Description gop(@F, x) is the reduction via the function F of the quantities x from each lab.
The result is duplicated on all labs.

The function F(x,y) should accept two arguments of the same type and
produce one result of that type, so it can be used iteratively, that is,

 F(F(x1,x2),F(x3,x4))

The function F should be associative, that is,

F(F(x1, x2), x3) = F(x1, F(x2, x3))

Example Calculate the sum of all labs’ value for x.

gop(@plus,x)

Find the maximum value of x among all the labs.

gop(@max,x)

Perform the horizontal concatenation of x from all labs.

gop(@horzcat,x)

Calculate the 2-norm of x from all labs.

gop(@(a1,a2)norm([a1 a2]),x)

See Also labBarrier, numlabs

F Function to operate across labs.

x Argument to function F, should be same variable on all labs.
3-41

help
3helpPurpose Help for toolbox functions in Command Window

Syntax help class/function

Arguments

Description help class/function returns command-line help for the specified function of
the given class.

If you do not know the class for the function, use class(obj), where function
is of the same class as the object obj.

Example Get help on functions from each of the Distributed Computing Toolbox object
classes.

help distcomp.jobmanager/createJob
help distcomp.job/cancel
help distcomp.task/waitForState

class(j1)
ans =
distcomp.job
help distcomp.job/createTask

See Also methods

class A Distributed Computing Toolbox object class:
distcomp.jobmanager, distcomp.job, or distcomp.task.

function A function for the specified class. To see what functions are
available for a class, see the methods reference page.
3-42

inspect
3inspectPurpose Open Property Inspector

Syntax inspect(obj)

Arguments

Description inspect(obj) opens the Property Inspector and allows you to inspect and set
properties for the object obj.

Remarks You can also open the Property Inspector via the Workspace browser by
double-clicking an object.

The Property Inspector does not automatically update its display. To refresh
the Property Inspector, open it again.

Note that properties that are arrays of objects are expandable. In the figure of
the example below, the Tasks property is expanded to enumerate the
individual task objects that make up this property. These individual task
objects can also be expanded to display their own properties.

Example Open the Property Inspector for the job object j1.

inspect(j1)

See Also get, set

obj An object or an array of objects.
3-43

jobStartup
3jobStartupPurpose M-file for user-defined options to run when job starts

Syntax jobStartup(job)

Arguments

Description jobStartup(job) runs automatically on a worker the first time the worker
evaluates a task for a particular job. You do not call this function from the
client session, nor explicitly as part of a task function.

The function M-file resides in the worker’s MATLAB installation at

MATLABROOT/toolbox/distcomp/user/jobStartup.m

You add M-code to the file to define job initialization actions to be performed on
the worker when it first evaluates a task for this job.

Alternatively, you can create a file called jobStartup.m and include it as part
of the job’s FileDependencies property. The version of the file in
FileDependencies takes precedence over the version in the worker’s MATLAB
installation.

For further detail, see the text in the installed jobStartup.m file.

See Also Functions
taskFinish, taskStartup

Properties
FileDependencies

job The job for which this startup is being executed.
3-44

labBarrier
3labBarrierPurpose Block execution until all labs have reached this call

Syntax labBarrier

Description labBarrier blocks execution of a parallel algorithm until all labs have
reached the call to labBarrier. This is useful for coordinating access to shared
resources such as file I/O.

Example In this example, all labs know the shared data filename.

fname = 'c:\data\datafile.mat';

Lab 1 writes some data to the file, which all other labs will read.

if labindex == 1
 data = randn(100, 1);
 save(fname, 'data');
 pause(5) %allow time for file to become available to other labs
end

All labs wait until all have reached the barrier; this ensures that no lab
attempts to load the file until lab 1 writes to it.

labBarrier;
load(fname);

 See Also labBroadcast
3-45

labBroadcast
3labBroadcastPurpose Send data to all labs or receive data sent to all labs

Syntax shared_data = labBroadcast(senderlab, data)
shared_data = labBroadcast(senderlab)

Arguments

Description shared_data = labBroadcast(senderlab, data) sends the specified data to
all executing labs. The data is broadcast from the lab with
labindex == senderlab, and received by all other labs.

shared_data = labBroadcast(senderlab) receives on each executing lab the
specified shared_data that was sent from the lab whose labindex is
senderlab.

If labindex is not senderlab, then you do not include the data argument. This
indicates that the function is to receive data, not broadcast it. The received
data, shared_data, is identical on all labs.

This function blocks execution until the lab’s involvement in the collective
broadcast operation is complete. Because some labs may complete their call to
labBroadcast before others have started, use labBarrier to guarantee that all
labs are at the same point in a program.

Example In this case, the broadcaster is the lab whose labindex is 1.

broadcast_id = 1;
if labindex == broadcast_id
 data = randn(10);
 shared_data = labBroadcast(broadcast_id, data);
else
 shared_data = labBroadcast(broadcast_id);
end

senderlab The labindex of the lab sending the broadcast.

data The data being broadcast. This argument is required only
for the lab that is broadcasting. The absence of this
argument indicates that a lab is receiving.

shared_data The broadcast data as it is received on all other labs.
3-46

labBroadcast
See Also labBarrier, labindex
3-47

labindex
3labindexPurpose Index of this lab

Syntax id = labindex

Description id = labindex returns the index of the lab currently executing the function.
labindex is assigned to each lab when a job begins execution, and applies only
for the duration of that job. The value of labindex spans from 1 to n, where n
is the number of labs running the current job, defined by numlabs.

See Also numlabs
3-48

labProbe
3labProbePurpose Test to see if messages are ready to be received from other lab

Syntax is_data_available = labProbe
is_data_available = labProbe(source)
is_data_available = labProbe('any', tag)
is_data_available = labProbe(source, tag)
[is_data_available, source, tag] = labProbe

Arguments

Description is_data_available = labProbe returns a logical value indicating whether
any data is available for this lab to receive with the labReceive function.

is_data_available = labProbe(source) tests for a message only from the
specified lab.

is_data_available = labProbe('any', tag) tests only for a message with
the specified tag, from any lab.

is_data_available = labProbe(source, tag) tests for a message from the
specified lab and tag.

[is_data_available, source, tag] = labProbe returns labindex and tag
of ready messages. If no data is available, source and tag are returned as [].

See Also labindex, labReceive, labSend

source labindex of a particular lab from which to test for
message.

tag Tag defined by the sending lab’s labSend function to
identify particular data.

'any' String to indicate that all labs should be tested for a
message.

is_data_available Boolean indicating if message is ready to be
received.
3-49

labReceive
3labReceivePurpose Receive data from another lab

Syntax data = labReceive
data = labReceive(source)
data = labReceive('any', tag)
data = labReceive(source, tag)
[data, source, tag] = labReceive

Arguments

Description data = labReceive receives data from any lab with any tag.

data = labReceive(source) receives data from the specified lab with any tag

data = labReceive('any', tag) receives data from any lab with the
specified tag.

data = labReceive(source, tag) receives data from only the specified lab
with the specified tag.

[data, source, tag] = labReceive returns the source and tag with the
data.

Remarks This function blocks execution in the lab until the corresponding call to
labSend occurs in the sending lab.

See Also labBarrier, labindex, labProbe, labSend

source labindex of a particular lab from which to receive
data.

tag Tag defined by the sending lab’s labSend function
to identify particular data.

'any' String to indicate that data can come from any lab.

data Data sent by sending lab’s labSend function.
3-50

labSend
3labSendPurpose Send data to another specified lab

Syntax labSend(data, destination)
labSend(data, destination, tag)

Arguments

Description labSend(data, destination) sends the data to the specified destination, with
a tag of 0.

labSend(data, destination, tag) sends the data to the specified
destination with the specified tag. data can be any MATLAB data type.
destination identifies the labindex of the receiving lab, and must be either a
scalar or a vector of integers between 1 and numlabs; it cannot be labindex (i.e.,
the current lab). tag can be any nonnegative integer.

Remarks This function might return before the corresponding labReceive completes in
the receiving lab.

 See Also labBarrier, labindex, labProbe, labReceive, numlabs

data Data sent to the other lab; any MATLAB data type.

destination labindex of receiving lab.

tag Nonnegative integer to identify data.
3-51

length
3lengthPurpose Length of object array

Syntax length(obj)

Arguments

Description length(obj) returns the length of obj. It is equivalent to the command
max(size(obj)).

Example Examine how many tasks are in the job j1.

length(j1.Tasks)
ans =
 9

See Also size

obj An object or an array of objects.
3-52

methods
3methodsPurpose List functions of object class

Syntax methods(obj)
out = methods(obj)

Arguments

Description methods(obj) returns the names of all methods for the class of which obj is an
instance.

out = methods(obj) returns the names of the methods as a cell array of
strings.

Example Create job manager, job, and task objects, and examine what methods are
available for each.

jm = findResource('scheduler','type','jobmanager', ...
 'name','MyJobManager','LookupURL','JobMgrHost');
methods(jm)
Methods for class distcomp.jobmanager:
createJob findJob pause resume

j1 = createJob(jm);
methods(j1)
Methods for class distcomp.job:
cancel destroy promote
createTask findTask submit
demote getAllOutputArguments waitForState

t1 = createTask(j1, @rand, 1, {3});
methods(t1)
Methods for class distcomp.task:
cancel destroy waitForState

See Also help

obj An object or an array of objects.

out Cell array of strings.
3-53

mpiLibConf
3mpiLibConfPurpose Location of MPI implementation

Syntax [primaryLib, extras] = mpiLibConf

Arguments

Description [primaryLib, extras] = mpiLibConf returns the MPI implementation
library to be used by a parallel job. primaryLib is the name of the shared
library file containing the MPI entry points. extras is a cell array of other
library names required by the MPI library.

To supply an alternative MPI implementation, create an M-file called
mpiLibConf, and place it on the MATLAB path. The recommended location is
$MATLAB/toolbox/distcomp/user.

Remarks Under all circumstances, the MPI library must support all MPI-1 functions.
Additionally, the MPI library must support null arguments to MPI_Init as
defined in section 4.2 of the MPI-2 standard. The library must also use an
mpi.h header file that is fully compatible with MPICH2.

When used with the MathWorks job manager, the MPI library must support
the following additional MPI-2 functions:

• MPI_Open_port
• MPI_Comm_accept
• MPI_Comm_connect

Example View the current MPI implementation library.

mpiLibConf
 mpich2.dll

primaryLib

extras
3-54

mpiSettings
3mpiSettingsPurpose Configure options for MPI communication

Syntax mpiSettings('DeadlockDetection', 'on')
mpiSettings('MessageLogging', 'on')
mpiSettings('MessageLoggingDestination', 'CommandWindow')
mpiSettings('MessageLoggingDestination', 'stdout')
mpiSettings('MessageLoggingDestination', 'File', <fname>)

Description mpiSettings('DeadlockDetection','on') turns on deadlock detection
during calls to labSend and labReceive (the default is 'off' for performance
reasons). If deadlock is detected, a call to labReceive might cause an error.
Although it is not necessary to enable deadlock detection on all labs, this is the
most useful option.

mpiSettings('MessageLogging','on') turns on MPI message logging. The
default is 'off'. The default destination is the MATLAB command window.

mpiSettings('MessageLoggingDestination','CommandWindow') sends MPI
logging information to the MATLAB command window. If the task within a
parallel job is set to capture command window output, the MPI logging
information will be present in the task’s CommandWindowOutput property.

mpiSettings('MessageLoggingDestination','stdout') sends MPI logging
information to the standard output for the MATLAB process. If you are using
a job manager, this is the MDCE service log file; if you are using an mpiexec
scheduler, this is the mpiexec debug log, which you can read with getDebugLog.

mpiSettings('MessageLoggingDestination','File',<fname>) sends MPI
logging information to the specified file.

Remarks Setting the MessageLoggingDestination does not automatically enable
message logging. A separate call is required to enable message logging.

mpiSettings has to be called on the lab, not the client. That is, it should be
called within the task function, within jobStartup.m or within
taskStartup.m.
3-55

mpiSettings
Example % in "jobStartup.m" for a parallel job
 mpiSettings('DeadlockDetection', 'on');
 myLogFname = sprintf('%s_%d.log', tempname, labindex);
 mpiSettings('MessageLoggingDestination', 'File', myLogFname);
 mpiSettings('MessageLogging', 'on');
3-56

numlabs
3numlabsPurpose Total number of labs operating in parallel on current job

Syntax n = numlabs

Description n = numlabs returns the total number of labs currently operating on the
current job. This value is the maximum value that can be used with labSend
and labReceive.

See Also labindex, labReceive, labSend
3-57

pause
3pausePurpose Pause job manager queue

Syntax pause(jm)

Arguments

Description pause(jm) pauses the job manager’s queue so that jobs waiting in the queued
state will not run. Jobs that are already running also pause, after completion
of tasks that are already running. No further jobs or tasks will run until the
resume function is called for the job manager.

The pause function does nothing if the job manager is already paused.

See Also resume, waitForState

jm Job manager object whose queue is paused.
3-58

promote
3promotePurpose Promote job in job manager queue

Syntax promote(jm, job)

Arguments

Description promote(job) promotes the job object job, that is queued in the job manager
jm.

If the job object is not the first job in the queue, the position of job and the
previous job object are exchanged.

See Also createJob, demote, findJob, submit

jm The job manager object that contains the job.

job Job object promoted in the queue.
3-59

resume
3resumePurpose Resume processing queue in job manager

Syntax resume(jm)

Arguments

Description resume(jm) resumes processing of the job manager’s queue so that jobs waiting
in the queued state will be run. This call will do nothing if the job manager is
not paused.

See Also pause, waitForState

jm Job manager object whose queue is resumed.
3-60

set
3setPurpose Configure or display object properties

Syntax set(obj)
props = set(obj)
set(obj,'PropertyName')
props = set(obj,'PropertyName')
set(obj,'PropertyName',PropertyValue,...)
set(obj,'configuration', 'ConfigurationName',...)
set(obj,PN,PV)
set(obj,S)

Arguments

Description set(obj) displays all configurable properties for obj. If a property has a finite
list of possible string values, these values are also displayed.

props = set(obj) returns all configurable properties for obj and their
possible values to the structure props. The field names of props are the
property names of obj, and the field values are cell arrays of possible property
values. If a property does not have a finite set of possible values, its cell array
is empty.

obj An object or an array of objects.

'PropertyName' A property name for obj.

PropertyValue A property value supported by PropertyName.

PN A cell array of property names.

PV A cell array of property values.

props A structure array whose field names are the
property names for obj.

S A structure with property names and property
values.

'configuration' Literal string to indicate usage of a configuration.

'ConfigurationName' Name of configuration to use, defined in
distcompUserConfig.m.
3-61

set
set(obj,'PropertyName') displays the valid values for PropertyName if it
possesses a finite list of string values.

props = set(obj,'PropertyName') returns the valid values for
PropertyName to props. props is a cell array of possible string values or an
empty cell array if PropertyName does not have a finite list of possible values.

set(obj,'PropertyName',PropertyValue,...) configures one or more
property values with a single command.

set(obj,PN,PV) configures the properties specified in the cell array of strings
PN to the corresponding values in the cell array PV. PN must be a vector. PV can
be m-by-n, where m is equal to the number of objects in obj and n is equal to
the length of PN.

set(obj,S) configures the named properties to the specified values for obj. S
is a structure whose field names are object properties, and whose field values
are the values for the corresponding properties.

set(obj,'configuration', 'ConfigurationName',...) sets the object
properties with values specified in the configuration ConfigurationName.
Configurations are defined in the file distcompUserConfig.m. For details about
writing and applying configurations, see “Programming with User
Configurations” on page 2-44.

Remarks You can use any combination of property name/property value pairs, structure
arrays, and cell arrays in one call to set. Additionally, you can specify a
property name without regard to case, and you can make use of property name
completion. For example, if j1 is a job object, the following commands are all
valid and have the same result.

set(j1,'Timeout',20)
set(j1,'timeout',20)
set(j1,'timeo',20)

Examples This example illustrates some of the ways you can use set to configure property
values for the job object j1.

set(j1,'Name','Job_PT109','Timeout',60);
3-62

set
props1 = {'Name' 'Timeout'};
values1 = {'Job_PT109' 60};
set(j1, props1, values1);

S.Name = 'Job_PT109';
S.Timeout = 60;
set(j1,S);

See Also get, inspect
3-63

size
3sizePurpose Size of object array

Syntax d = size(obj)
[m,n] = size(obj)
[m1,m2,...,mn] = size(obj)
m = size(obj,dim)

Arguments

Description d = size(obj) returns the two-element row vector d containing the number of
rows and columns in obj.

[m,n] = size(obj) returns the number of rows and columns in separate
output variables.

[m1,m2,m3,...,mn] = size(obj) returns the length of the first n dimensions
of obj.

m = size(obj,dim) returns the length of the dimension specified by the scalar
dim. For example, size(obj,1) returns the number of rows.

See Also length

obj An object or an array of objects.

dim The dimension of obj.

d The number of rows and columns in obj.

m The number of rows in obj, or the length of the dimension
specified by dim.

n The number of columns in obj.

m1,m2,...,
mn

The lengths of the first n dimensions of obj.
3-64

submit
3submitPurpose Queue job in scheduler

Syntax submit(obj)

Arguments

Description submit(obj) queues the job object, obj, in the scheduler queue. The scheduler
used for this job was determined when the job was created.

Remarks When a job contained in a scheduler is submitted, the job’s State property is
set to queued, and the job is added to the list of jobs waiting to be executed.

The jobs in the waiting list are executed in a first in, first out manner; that is,
the order in which they were submitted, except when the sequence is altered
by promote, demote, cancel, or destroy.

Example Find the job manager named jobmanager1 using the lookup service on host
JobMgrHost.

jm1 = findResource('scheduler','type','jobmanager', ...
 'name','jobmanager1','LookupURL','JobMgrHost');

Create a job object.

j1 = createJob(jm1);

Add a task object to be evaluated for the job.

t1 = createTask(j1, @myfunction, 1, {10, 10});

Queue the job object in the job manager.

submit(j1);

See Also createJob, findJob

obj Job object to be queued.
3-65

taskFinish
3taskFinishPurpose M-file for user-defined options to run when task finishes

Syntax taskFinish(task)

Arguments

Description taskFinish(task) runs automatically on a worker each time the worker
finishes evaluating a task for a particular job. You do not call this function from
the client session, nor explicitly as part of a task function.

The function M-file resides in the worker’s MATLAB installation at

MATLABROOT/toolbox/distcomp/user/taskFinish.m

You add M-code to the file to define task finalization actions to be performed on
the worker every time it finishes evaluating a task for this job.

Alternatively, you can create a file called taskFinish.m and include it as part
of the job’s FileDependencies property. The version of the file in
FileDependencies takes precedence over the version in the worker’s MATLAB
installation.

For further detail, see the text in the installed taskFinish.m file.

See Also Functions
jobStartup, taskStartup

Properties
FileDependencies

task The task being evaluated by the worker.
3-66

taskStartup
3taskStartupPurpose M-file for user-defined options to run when task starts

Syntax taskStartup(task)

Arguments

Description taskStartup(task) runs automatically on a worker each time the worker
evaluates a task for a particular job. You do not call this function from the
client session, nor explicitly as part of a task function.

The function M-file resides in the worker’s MATLAB installation at

MATLABROOT/toolbox/distcomp/user/taskStartup.m

You add M-code to the file to define task initialization actions to be performed
on the worker every time it evaluates a task for this job.

Alternatively, you can create a file called taskStartup.m and include it as part
of the job’s FileDependencies property. The version of the file in
FileDependencies takes precedence over the version in the worker’s MATLAB
installation.

For further detail, see the text in the installed taskStartup.m file.

See Also Functions
jobStartup, taskFinish

Properties
FileDependencies

task The task being evaluated by the worker.
3-67

waitForState
3waitForStatePurpose Wait for object to change state

Syntax waitForState(obj)
waitForState(obj, 'state')
waitForState(obj, 'state', timeout)

Arguments

Description waitForState(obj) blocks execution in the client session until the job or task
identified by the object obj reaches the 'finished' state or fails. For a job
object, this occurs when all its tasks are finished processing on remote workers.

waitForState(obj, 'state') blocks execution in the client session until the
specified object changes state to the value of 'state'. For a job object, the
valid states to wait for are 'queued', 'running', and 'finished'. For a task
object, the valid states are 'running' and 'finished'.

If the object is currently or has already been in the specified state, a wait is not
performed and execution returns immediately. For example, if you execute
waitForState(job, 'queued') for job already in the 'finished' state, the call
returns immediately.

waitForState(obj, 'state', timeout) blocks execution until either the
object reaches the specified 'state', or timeout seconds elapse, whichever
happens first.

Example Submit a job to the queue, and wait for it to finish running before retrieving its
results.

submit(job)
waitForState(job, 'finished')
results = getAllOutputArguments(job)

See Also pause, resume

obj Job or task object whose change in state to wait for.

'state' Value of the object’s State property to wait for.

timeout Maximum time to wait, in seconds.
3-68

4

Property Reference

This chapter describes the Distributed Computing Toolbox object properties in detail.

Properties — By Category
(p. 4-2)

Contains a series of tables that group properties by category

Properties — Alphabetical
List (p. 4-7)

Lists all the properties alphabetically

4 Property Reference

4-2
Properties — By Category

Job Manager Properties

Scheduler Properties

Job Manager Properties Properties of job manager objects

Scheduler Properties Properties of scheduler objects

Job Properties Properties of job objects

Task Properties Properties of task objects

Worker Properties Properties of worker objects

BusyWorkers Workers currently running tasks

Configuration Specify configuration to apply to object or
toolbox function

HostAddress IP address of host running job manager

HostName Name of host running job manager

IdleWorkers Idle workers available to run tasks

Jobs Jobs contained in job manager

Name Name of job manager

NumberOfBusyWorkers Number of workers currently running tasks

NumberOfIdleWorkers Number of idle workers available to run
tasks

State Current state of job manager

ClusterMatlabRoot Specify MATLAB root for cluster

ClusterName Name of LSF cluster

Configuration Specify configuration to apply to object or
toolbox function

DataLocation Specify directory where job data is stored

Properties — By Category
Job Properties

EnvironmentSetMethod Specify means of setting environment
variables for mpiexec scheduler

HasSharedFilesystem Specify whether nodes are to share
DataLocation

Jobs Jobs contained in directory identified by
DataLocation property value

MasterName Name of LSF master node

MatlabCommandToRun MATLAB command that generic scheduler
runs to start lab

MpiexecFileName Specify pathname of executable mpiexec
command

SubmitArguments Specify additional arguments to use when
submitting job to LSF or mpiexec scheduler

SubmitFcn Specify function to run when job submitted
to generic scheduler

Type Type of generic scheduler

WorkerMachineOsType Specify operating system of nodes on which
mpiexec scheduler will start labs

Configuration Specify configuration to apply to object or
toolbox function

CreateTime When job was created

FileDependencies Directories and files that worker can access

FinishedFcn Specify callback to execute after job runs

FinishTime When job finished

ID Object identifier

JobData Data made available to all workers for job’s
tasks
4-3

4 Property Reference

4-4
Task Properties

MaximumNumberOfWorkers Specify maximum number of workers to
perform job tasks

MinimumNumberOfWorkers Specify minimum number of workers to
perform job tasks

Name Specify name for job object

Parent Parent job manager object of job

PathDependencies Specify directories to add to MATLAB worker
path

QueuedFcn Specify M-file function to execute when job is
added to queue

RestartWorker Specify whether to restart MATLAB workers
before evaluating job tasks

RunningFcn Specify M-file function to execute when job
starts running

StartTime When job started running

State Current state of job object

SubmitTime When job was submitted to job queue

Tag Specify label to associate with job object

Tasks Tasks contained in job object

Timeout Specify time limit to complete job

Type Type of object

UserData Specify data to associate with job object

UserName User who created job

CaptureCommandWindowOutput Specify whether to return Command Window
output

CommandWindowOutput Text produced by execution of task object’s
function

Properties — By Category
Worker Properties

Configuration Specify configuration to apply to object or
toolbox function

CreateTime When task was created

ErrorIdentifier Task error identifier

ErrorMessage Message from task error

FinishedFcn Specify callback to execute after task runs

FinishTime When task finished

Function Function called when evaluating task

ID Object identifier

InputArguments Input arguments to task object

NumberOfOutputArguments Number of arguments returned by task
function

OutputArguments Data returned from execution of task

Parent Parent job object of task

RunningFcn Specify M-file function to execute when task
starts running

State Current state of task object

StartTime When task started running

Timeout Specify time limit to complete task

Type Type of object

UserData Specify data to associate with task object

Worker Worker session that performed task

CurrentJob Job whose task this worker is currently
evaluating

CurrentTask Task that worker is currently running

HostAddress IP address of host running worker session
4-5

4 Property Reference

4-6
HostName Name of host running worker session

Name Name of worker object

PreviousJob Job whose task this worker previously ran

PreviousTask Task that this worker previously ran

State Current state of worker object

Properties — Alphabetical List
Properties — Alphabetical List
This section contains detailed descriptions of the Distributed Computing
Toolbox object properties. Each property reference page contains some or all of
the following information:

• The property name

• A description of the property

• The property characteristics, including

- Usage — the object(s) the property is associated with

- Read-only — the condition under which the property is read-only

A property can be read-only always, never, or depending on the state of the
object. You can configure a property value using the set command or dot
notation. You can return the current property value using the get
command or dot notation.

- Data type — the property data type

This is the data type you use when specifying a property value

• Valid property values including the default value

When property values are given by a predefined list, the default value is
usually indicated by {} (curly braces).

• An example using the property

• Related properties and functions
4-7

BusyWorkers
4BusyWorkersPurpose Workers currently running tasks

Description The BusyWorkers property value indicates which workers are currently
running tasks for the job manager.

Characteristics

Values As workers complete tasks and assume new ones, the lists of workers in
BusyWorkers and IdleWorkers can change rapidly. If you examine these two
properties at different times, you might see the same worker on both lists if
that worker has changed its status between those times.

If a worker stops unexpectedly, the job manager’s knowledge of that as a busy
or idle worker does not get updated until the job manager runs the next job and
tries to send a task to that worker.

Example Examine the workers currently running tasks for a particular job manager.

jm = findResource('scheduler','type','jobmanager', ...
 'name','MyJobManager','LookupURL','JobMgrHost');
workers_running_tasks = get(jm, 'BusyWorkers')

See Also Properties
IdleWorkers, MaximumNumberOfWorkers, MinimumNumberOfWorkers,
NumberOfBusyWorkers, NumberOfIdleWorkers

Usage Job manager object

Read-only Always

Data type Array of worker objects
4-8

CaptureCommandWindowOutput
4CaptureCommandWindowOutputPurpose Specify whether to return Command Window output

Description CaptureCommandWindowOutput specifies whether to return command window
output for the evaluation of a task object’s Function property.

If CaptureCommandWindowOutput is set true (or logical 1), the command
window output will be stored in the CommandWindowOutput property of the task
object. If the value is set false (or logical 0), the task does not retain command
window output.

Characteristics

Values The value of CaptureCommandWindowOutput can be set to true (or logical 1) or
false (or logical 0). When you perform get on the property, the value returned
is logical 1 or logical 0. The default value is logical 0 to save network bandwidth
in situations where the output is not needed.

Example Set all tasks in a job to retain any command window output generated during
task evaluation.

jm = findResource('scheduler','type','jobmanager', ...
 'name','MyJobManager','LookupURL','JobMgrHost');
j = createJob(jm);
createTask(j, @myfun, 1, {x});
createTask(j, @myfun, 1, {x});
.
.
.
alltasks = get(j, 'Tasks');
set(alltasks, 'CaptureCommandWindowOutput', true)

See Also Properties
Function, CommandWindowOutput

Usage Task object

Read-only While task is running or finished

Data type Logical
4-9

ClusterMatlabRoot
4ClusterMatlabRootPurpose Specify MATLAB root for cluster

Description ClusterMatlabRoot specifies the pathname to MATLAB for the cluster to use
for starting MATLAB worker processes. The path must be available from all
nodes on which worker sessions will run. For generic schedulers,
ClusterMatlabRoot is prefixed to MatlabCommandToRun.

Characteristics

Values ClusterMatlabRoot is a string. It must be structured appropriately for the file
system of the cluster nodes. The directory must be accessible as expressed in
this string, from all cluster nodes on which MATLAB workers will run. If the
value is empty, the MATLAB executable must be on the path of the worker.

See Also Properties
DataLocation, MasterName, MatlabCommandToRun, PathDependencies

Usage Scheduler object

Read-only Never

Data type String
4-10

ClusterName
4ClusterNamePurpose Name of LSF cluster

Description ClusterName indicates the name of the LSF cluster on which this scheduler will
run your jobs.

Characteristics

See Also Properties
DataLocation, MasterName, PathDependencies

Usage LSF Scheduler object

Read-only Always

Data type String
4-11

CommandWindowOutput
4CommandWindowOutputPurpose Text produced by execution of task object’s function

Description CommandWindowOutput contains the text produced during the execution of a
task object’s Function property that would normally be printed to the
MATLAB Command Window.

For example, if the function specified in the Function property makes calls to
the disp command, the output that would normally be printed to the Command
Window on the worker is captured in the CommandWindowOutput property.

Whether to store the CommandWindowOutput is specified using the
CaptureCommandWindowOutput property. The CaptureCommandWindowOutput
property by default is logical 0 to save network bandwidth in situations when
the CommandWindowOutput is not needed.

Characteristics

Values Before a task is evaluated, the default value of CommandWindowOutput is an
empty string.

Example Get the Command Window output from all tasks in a job.

jm = findResource('scheduler','type','jobmanager', ...
 'name','MyJobManager','LookupURL','JobMgrHost');
j = createJob(jm);
createTask(j, @myfun, 1, {x});
createTask(j, @myfun, 1, {x});
.
.
alltasks = get(j, 'Tasks')
set(alltasks, 'CaptureCommandWindowOutput', true)
submit(j)
outputmessages = get(alltasks, 'CommandWindowOutput')

See Also Properties
Function, CaptureCommandWindowOutput

Usage Task object

Read-only Always

Data type String
4-12

Configuration
4ConfigurationPurpose Specify configuration to apply to object or toolbox function

Description You use the Configuration property to apply a configuration to an object. The
configuration is defined in the distcompUserConfig.m file. For details about
writing and applying configurations, see “Programming with User
Configurations” on page 2-44.

Setting the Configuration property causes all the applicable properties
defined in the configuration to be set on the object.

Characteristics

Values The value of Configuration is a string that matches the name of a
configuration in the file distcompUserConfig.m. If a configuration was never
applied to the object, or if any of the settable object properties have been
changed since a configuration was applied, the Configuration property is set
to an empty string.

Example Use a configuration to find a scheduler.

jm = findResource('scheduler','configuration','myConfig')

Use a configuration when creating a job object.

job1 = createJob(jm,'Configuration','jobmanager')

Apply a configuration to an existing job object.

job2 = createJob(jm)
set(job2,'Configuration','myjobconfig')

See Also Functions
createJob, createParallelJob, createTask, dfeval, dfevalasync,
findResource

Usage Scheduler, job, or task object

Read-only Never

Data type String
4-13

CreateTime
4CreateTimePurpose When task or job was created

Description CreateTime holds a date number specifying the time when a task or job was
created, in the format 'day mon dd hh:mm:ss tz yyyy'.

Characteristics

Values CreateTime is assigned the job manager’s system time when a task or job is
created.

Example Create a job, then get its CreateTime.

jm = findResource('scheduler','type','jobmanager', ...
 'name','MyJobManager','LookupURL','JobMgrHost');
j = createJob(jm);
get(j,'CreateTime')
ans =
Mon Jun 28 10:13:47 EDT 2004

See Also Functions
createJob, createTask

Properties
FinishTime, StartTime, SubmitTime

Usage Task object or job object

Read-only Always

Data type String
4-14

CurrentJob
4CurrentJobPurpose Job whose task this worker session is currently evaluating

Description CurrentJob indicates the job whose task the worker is evaluating at the
present time.

Characteristics

Values CurrentJob is an empty vector while the worker is not evaluating a task.

See Also Properties
CurrentTask, PreviousJob, PreviousTask, Worker

Usage Worker object

Read-only Always

Data type Job object
4-15

CurrentTask
4CurrentTaskPurpose Task that worker is currently running

Description CurrentTask indicates the task that the worker is evaluating at the present
time.

Characteristics

Values CurrentTask is an empty vector while the worker is not evaluating a task.

See Also Properties
CurrentJob, PreviousJob, PreviousTask, Worker

Usage Worker object

Read-only Always

Data type Task object
4-16

DataLocation
4DataLocationPurpose Specify directory where job data is stored

Description DataLocation identifies where the job data is located.

Characteristics

Values DataLocation is a string or structure specifying a pathname for the job data.
The default value is the directory in which MATLAB was started.

In a shared file system, the client, scheduler, and all worker nodes must have
access to this location. In a nonshared file system, only the MATLAB client and
scheduler access job data in this location.

Use a structure to specify the DataLocation in an environment of mixed
platforms. The fields for the structure are named pc and unix. Each node then
uses the field appropriate for its platform. See the examples below.

Examples Set the DataLocation property for a UNIX cluster.

sch = findResource('scheduler','name','LSF')
set(sch, 'DataLocation','/depot/jobdata')

Use a structure to set the DataLocation property for a mixed platform cluster.

d = struct('pc', '\\ourdomain\depot\jobdata', ...
 'unix', '/depot/jobdata')
set(sch, 'DataLocation', d)

See Also Properties
HasSharedFilesystem, PathDependencies

Usage Scheduler object

Read-only Never

Data type String or struct
4-17

EnvironmentSetMethod
4EnvironmentSetMethodPurpose Specify means of setting environment variables for mpiexec scheduler

Description The mpiexec scheduler needs to supply environment variables to the MATLAB
processes (labs) that it launches. There are two means by which it can do this,
determined by the EnvironmentSetMethod property.

Characteristics

Values A value of '-env' instructs the mpiexec scheduler to insert into the mpiexec
command line additional directives of the form -env VARNAME value.

A value of 'setenv' instructs the mpiexec scheduler to set the environment
variables in the environment that launches mpiexec.

Usage mpiexec scheduler object

Read-only Never

Data type String
4-18

ErrorIdentifier
4ErrorIdentifierPurpose Task error identifier

Description ErrorIdentifier contains the identifier output from execution of the
lasterror command if an error occurs during the task evaluation.

Characteristics

Values ErrorIdentifier is empty before an attempt to run a task. ErrorIdentifier
remains empty if the evaluation of a task object’s function does not produce an
error or if the error did not provide an identifier.

See Also Properties
ErrorMessage, Function

Usage Task object

Read-only Always

Data type String
4-19

ErrorMessage
4ErrorMessagePurpose Message from task error

Description ErrorMessage contains the message output from execution of the lasterror
command if an error occurs during the task evaluation.

Characteristics

Values ErrorMessage is empty before an attempt to run a task. ErrorMessage remains
empty if the evaluation of a task object’s function does not produce an error.

Example Retrieve error message from task object.

jm = findResource('scheduler','type','jobmanager', ...
 'name','MyJobManager','LookupURL','JobMgrHost');
j = createJob(jm);
a = [1 2 3 4]; %Note: matrix not square
t = createTask(j, @inv, 1, {a});
submit(j)
get(t,'ErrorMessage')
ans =
Error using ==> inv
Matrix must be square.

See Also Properties
ErrorIdentifier, Function

Usage Task object

Read-only Always

Data type String
4-20

FileDependencies
4FileDependenciesPurpose Directories and files that worker can access

Description FileDependencies contains a list of directories and files that the worker will
need to access for evaluating a job’s tasks.

The value of the property is defined by the client session. You set the value for
the property as a cell array of strings. Each string is an absolute or relative
pathname to a directory or file. The toolbox makes a zip file of all the files and
directories referenced in the property, and stores it on the job manager
machine.

The first time a worker evaluates a task for a particular job, the job manager
passes to the worker the zip file of the files and directories in the
FileDependencies property. On the worker, the file is unzipped, and a
directory structure is created that is exactly the same as that accessed on the
client machine where the property was set. Those entries listed in the property
value are added to the path in the MATLAB worker session. (The
subdirectories of the entries are not added to the path, even though they are
included in the directory structure.)

When the worker runs subsequent tasks for the same job, it uses the directory
structure already set up by the job’s FileDependencies property for the first
task it ran for that job.

Characteristics

Values The value of FileDependencies is empty by default. If a pathname that does
not exist is specified for the property value, an error is generated.

Example Make available to a job’s workers the contents of the directories fd1 and fd2,
and the file fdfile1.m.

Usage Job object

Read-only After job is submitted

Data type Cell array of strings
4-21

FileDependencies
set(job1,'FileDependencies',{'fd1' 'fd2' 'fdfile1.m'})
get(job1,'FileDependencies')
ans =
 'fd1'
 'fd2'
 'fdfile1.m'

See Also Functions
jobStartup, taskFinish, taskStartup
4-22

FinishedFcn
4FinishedFcnPurpose Specify callback to execute after task or job runs

Description The callback will be executed in the local MATLAB session, that is, the session
that sets the property, the MATLAB client.

Characteristics

Values FinishedFcn can be set to any valid MATLAB callback value.

The callback follows the same model as callbacks for Handle Graphics®,
passing to the callback function the object (job or task) that makes the call and
an empty argument of event data.

Example Create a job and set its FinishedFcn property using a function handle to an
anonymous function that sends information to the display.

jm = findResource('scheduler','type','jobmanager', ...
 'name','MyJobManager','LookupURL','JobMgrHost');
j = createJob(jm, 'Name', 'Job_52a');

set(j, 'FinishedFcn', ...
 @(job,eventdata) disp([job.Name ' ' job.State]));

Create a task whose FinishFcn is a function handle to a separate function.

createTask(j, @rand, 1, {2,4}, ...
 'FinishedFcn', @clientTaskCompleted);

Create the function clientTaskCompleted.m on the path of the MATLAB client.

function clientTaskCompleted(task,eventdata)
 disp(['Finished task: ' num2str(task.ID)])

Run the job and note the output messages from the job and task FinishedFcn
callbacks.

submit(j)
Finished task: 1
Job_52a finished

Usage Task object or job object

Read-only Never

Data type Callback
4-23

FinishedFcn
See Also Properties
QueuedFcn, RunningFcn
4-24

FinishTime
4FinishTimePurpose When task or job finished

Description FinishTime holds a date number specifying the time when a task or job
finished executing, in the format 'day mon dd hh:mm:ss tz yyyy'.

If a task or job is stopped or is aborted due to an error condition, FinishTime
will hold the time when the task or job was stopped or aborted.

Characteristics

Values FinishTime is assigned the job manager’s system time when the task or job has
finished.

Example Create and submit a job, then get its StartTime and FinishTime.

jm = findResource('scheduler','type','jobmanager', ...
 'name','MyJobManager','LookupURL','JobMgrHost');
j = createJob(jm);
t1 = createTask(j, @rand, 1, {12,12});
t2 = createTask(j, @rand, 1, {12,12});
t3 = createTask(j, @rand, 1, {12,12});
t4 = createTask(j, @rand, 1, {12,12});
submit(j)
waitForState(j,'finished')
get(j,'StartTime')
ans =
Mon Jun 21 10:02:17 EDT 2004
get(j,'FinishTime')
ans =
Mon Jun 21 10:02:52 EDT 2004

See Also Functions
cancel, submit

Properties
CreateTime, StartTime, SubmitTime

Usage Task object or job object

Read-only Always

Data type String
4-25

Function
4FunctionPurpose Function called when evaluating task

Description Function indicates the function performed in the evaluation of a task. You set
the function when you create the task using createTask.

Characteristics

See Also Functions
createTask

Properties
InputArguments, NumberOfOutputArguments, OutputArguments

Usage Task object

Read-only While task is running or finished

Data type String or function handle
4-26

HasSharedFilesystem
4HasSharedFilesystemPurpose Specify whether nodes share DataLocation

Description HasSharedFilesystem determines whether the job data stored in the location
identified by the DataLocation property can be accessed from all nodes in the
cluster. If HasSharedFilesystem is false (0), the scheduler handles data
transfers to and from the worker nodes. If HasSharedFilesystem is true (1),
the workers access the job data directly.

Characteristics

Values The value of HasSharedFilesystem can be set to true (or logical 1) or false (or
logical 0). When you perform get on the property, the value returned is logical
1 or logical 0.

See Also Properties
DataLocation, FileDependencies, PathDependencies

Usage Scheduler object

Read-only Never

Data type Logical
4-27

HostAddress
4HostAddressPurpose IP address of host running job manager or worker session

Description HostAddress indicates the numerical IP address of the computer running the
job manager or worker session to which the job manager object or worker object
refers. You can match the HostAddress property to find a desired job manager
or worker when creating an object with findResource.

Characteristics

Example Create a job manager object and examine its HostAddress property.

jm = findResource('scheduler','type','jobmanager', ...
 'name','MyJobManager','LookupURL','JobMgrHost');
get(jm, 'HostAddress')
ans =
 123.123.123.123

See Also Functions
findResource

Properties
HostName

Usage Job manager object or worker object

Read-only Always

Data type Cell array of strings
4-28

HostName
4HostNamePurpose Name of host running job manager or worker session

Description You can match the HostName property to find a desired job manager or worker
when creating the job manager or worker object with findResource.

Characteristics

Example Create a job manager object and examine its HostName property.

jm = findResource('scheduler','type','jobmanager', ...
 'Name', 'MyJobManager')
get(jm, 'HostName')
ans =
JobMgrHost

See Also Functions
findResource

Properties
HostAddress

Usage Job manager object or worker object

Read-only Always

Data type String
4-29

ID
4IDPurpose Object identifier

Description Each object has a unique identifier within its parent object. The ID value is
assigned at the time of object creation. You can use the ID property value to
distinguish one object from another, such as different tasks in the same job.

Characteristics

Values The first job created in a job manager has the ID value of 1, and jobs are
assigned ID values in numerical sequence as they are created after that.

The first task created in a job has the ID value of 1, and tasks are assigned ID
values in numerical sequence as they are created after that.

Example Examine the ID property of different objects.

jm = findResource('scheduler','type','jobmanager', ...
 'name','MyJobManager','LookupURL','JobMgrHost');
j = createJob(jm)
createTask(j, @rand, 1, {2,4});
createTask(j, @rand, 1, {2,4});
tasks = get(j, 'Tasks');
get(tasks, 'ID')
ans =
 [1]
 [2]

The ID values are the only unique properties distinguishing these two tasks.

See Also Functions
createJob, createTask

Properties
Jobs, Tasks

Usage Job object or task object

Read-only Always

Data type Double
4-30

IdleWorkers
4IdleWorkersPurpose Idle workers available to run tasks

Description The IdleWorkers property value indicates which workers are currently
available to the job manager for the performance of job tasks.

Characteristics

Values As workers complete tasks and assume new ones, the lists of workers in
BusyWorkers and IdleWorkers can change rapidly. If you examine these two
properties at different times, you might see the same worker on both lists if
that worker has changed its status between those times.

If a worker stops unexpectedly, the job manager’s knowledge of that as a busy
or idle worker does not get updated until the job manager runs the next job and
tries to send a task to that worker.

Example Examine which workers are available to a job manager for immediate use to
perform tasks.

jm = findResource('scheduler','type','jobmanager', ...
 'name','MyJobManager','LookupURL','JobMgrHost');
get(jm, 'NumberOfIdleWorkers')

See Also Properties
BusyWorkers, MaximumNumberOfWorkers, MinimumNumberOfWorkers,
NumberOfBusyWorkers, NumberOfIdleWorkers

Usage Job manager object

Read-only Always

Data type Array of worker objects
4-31

InputArguments
4InputArgumentsPurpose Input arguments to task object

Description InputArguments is a 1-by-N cell array in which each element is an expected
input argument to the task function. You specify the input arguments when
you create a task with the createTask function.

Characteristics

Values The forms and values of the input arguments are totally dependent on the task
function.

Example Create a task requiring two input arguments, then examine the task’s
InputArguments property.

jm = findResource('scheduler','type','jobmanager', ...
 'name','MyJobManager','LookupURL','JobMgrHost');
j = createJob(jm);
t = createTask(j, @rand, 1, {2, 4});
get(t, 'InputArguments')
ans =
 [2] [4]

See Also Functions
createTask

Properties
Function, OutputArguments

Usage Task object

Read-only While task is running or finished

Data type Cell array
4-32

JobData
4JobDataPurpose Data made available to all workers for job’s tasks

Description The JobData property holds data that eventually gets stored in the local
memory of the worker machines, so that it does not have to be passed to the
worker for each task in a job that the worker evaluates. Passing the data only
once per job to each worker is more efficient than passing data with each task.

Note, that to access the data contained in a job’s JobData property, the worker
session evaluating the task needs to have access to the job, which it gets from
a call to the function getCurrentJob, as discussed in the example below.

Characteristics

Values JobData is an empty vector by default.

Example Create job1 and set its JobData property value to the contents of array1.

job1 = createJob(jm)
set(job1, 'JobData', array1)

createTask(job1, @myfunction, 1, {task_data})

Now the contents of array1 will be available to all the tasks in the job. Because
the job itself must be accessible to the tasks, myfunction must include a call to
the function getCurrentJob. That is, the task function myfunction needs to
call getCurrentJob to get the job object through which it can get the JobData
property.

See Also Functions
createJob, createTask

Usage Job object

Read-only After job is submitted

Data type Any type
4-33

Jobs
4JobsPurpose Jobs contained in job manager service or in scheduler’s DataLocation

Description The Jobs property contains an array of all the job objects in a job manager,
whether the jobs are pending, queued, running, or finished. Job objects will be
categorized by their State property and job objects in the 'queued' state will
be displayed in the order in which they are queued, with the next job to execute
at the top (first).

Characteristics

Example Examine the Jobs property for a job manager, and use the resulting array of
objects to set property values.

jm = findResource('scheduler','type','jobmanager', ...
 'name','MyJobManager','LookupURL','JobMgrHost');
j1 = createJob(jm);
j2 = createJob(jm);
j3 = createJob(jm);
j4 = createJob(jm);
.
.
.
all_jobs = get(jm, 'Jobs')
set(all_jobs, 'MaximumNumberOfWorkers', 10);

The last line of code sets the MaximumNumberOfWorkers property value to 10 for
each of the job objects in the array all_jobs.

See Also Functions
createJob, destroy, findJob, submit

Properties
Tasks

Usage Job manager or scheduler object

Read-only Always

Data type Array of job objects
4-34

MasterName
4MasterNamePurpose Name of LSF master node

Description MasterName indicates the name of the LSF cluster master node.

Characteristics

Values MasterName is a string of the full name of the master node.

See Also Properties
ClusterName

Usage LSF scheduler object

Read-only Always

Data type String
4-35

MatlabCommandToRun
4MatlabCommandToRunPurpose MATLAB command that generic scheduler runs to start lab

Description MatlabCommandToRun indicates the command that the scheduler should send to
a worker to start MATLAB for a task evaluation. To assure that the correct
MATLAB is run, MatlablCommandToRun is prefixed by ClusterMatlabRoot.

Characteristics

Values MatlabCommandToRun is set by the toolbox when the scheduler object is created.

See Also Properties
ClusterMatlabRoot, SubmitFcn

Usage Generic scheduler object

Read-only Always

Data type String
4-36

MaximumNumberOfWorkers
4MaximumNumberOfWorkersPurpose Specify maximum number of workers to perform job tasks

Description With MaximumNumberOfWorkers you specify the greatest number of workers to
be used to perform the evaluation of the job’s tasks at any one time. Tasks may
be distributed to different workers at different times during execution of the
job, so that more than MaximumNumberOfWorkers might be used for the whole
job, but this property limits the portion of the cluster used for the job at any one
time.

Characteristics

Values You can set the value to anything equal to or greater than the value of the
MinimumNumberOfWorkers property.

Example Set the maximum number of workers to perform a job.

jm = findResource('scheduler','type','jobmanager', ...
 'name','MyJobManager','LookupURL','JobMgrHost');
j = createJob(jm);
set(j, 'MaximumNumberOfWorkers', 12);

In this example, the job will use no more than 12 workers, regardless of how
many tasks are in the job and how many workers are available on the cluster.

See Also Properties
BusyWorkers, IdleWorkers, MinimumNumberOfWorkers, NumberOfBusyWorkers,
NumberOfIdleWorkers

Usage Job object

Read-only After job is submitted

Data type Double
4-37

MinimumNumberOfWorkers
4MinimumNumberOfWorkersPurpose Specify minimum number of workers to perform job tasks

Description With MinimumNumberOfWorkers you specify the minimum number of workers to
perform the evaluation of the job’s tasks. When the job is queued, it will not run
until at least this many workers are simultaneously available.

If MinimumNumberOfWorkers workers are available to the job manager, but
some of the task dispatches fail due to network or node failures, such that the
number of tasks actually dispatched is less than MinimumNumberOfWorkers, the
job will be cancelled.

Characteristics

Values The default value is 1. You can set the value anywhere from 1 up to or equal to
the value of the MaximumNumberOfWorkers property.

Example Set the minimum number of workers to perform a job.

jm = findResource('scheduler','type','jobmanager', ...
 'name','MyJobManager','LookupURL','JobMgrHost');
j = createJob(jm);
set(j, 'MinimumNumberOfWorkers', 6);

In this example, when the job is queued, it will not begin running tasks until
at least 6 workers are available to perform task evaluations.

See Also Properties
BusyWorkers, IdleWorkers, MaximumNumberOfWorkers, NumberOfBusyWorkers,
NumberOfIdleWorkers

Usage Job object

Read-only After job is submitted

Data type Double
4-38

MpiexecFileName
4MpiexecFileNamePurpose Specify pathname of executable mpiexec command

Description MpiexecFileName specifies which mpiexec command is executed to run your
jobs.

Characteristics

Remarks See your network administrator to find out which mpiexec you should run. The
default value of the property points the mpiexec included in your MATLAB
installation.

See Also Functions
mpiLibConf, mpiSettings

Properties
SubmitArguments

Usage mpiexec scheduler object

Read-only Never

Data type String
4-39

Name
4NamePurpose Name of job manager, job, or worker object

Description The descriptive name of a job manager or worker is set when its service is
started, as described in “Customizing Engine Services” in the MATLAB
Distributed Computing Engine System Administrator’s Guide. This is
reflected in the Name property of the object that represents the service. You can
use the name of the job manager or worker service to find the service you want
when creating an object with the findResource function.

You configure Name as a descriptive name for a job object at any time except
when the job is queued or running.

Characteristics

Values By default, a job object is constructed with a Name created by concatenating the
Name of the job manager with _job.

Example Construct a job manager object by searching for the name of the service you
want to use.

jm = findResource('jobmanager','Name','MyJobManager');

Construct a job and note its default Name.

j = createJob(jm);
get(j, 'Name')
ans =
 MyJobManager_job

Change the job’s Name property and verify the new setting.

set(j,'Name','MyJob')
get(j,'Name')
ans =
 MyJob

Usage Job manager object, job object, or worker object

Read-only Always for a job manager or worker object;
after job object is submitted

Data type String
4-40

Name
See Also Functions
findResource, createJob
4-41

NumberOfBusyWorkers
4NumberOfBusyWorkersPurpose Number of workers currently running tasks

Description The NumberOfBusyWorkers property value indicates how many workers are
currently running tasks for the job manager.

Characteristics

Values The value of NumberOfBusyWorkers can range from 0 up to the total number of
workers registered with the job manager.

Example Examine the number of workers currently running tasks for a job manager.

jm = findResource('scheduler','type','jobmanager', ...
 'name','MyJobManager','LookupURL','JobMgrHost');
get(jm, 'NumberOfBusyWorkers')

See Also Properties
BusyWorkers, IdleWorkers, MaximumNumberOfWorkers,
MinimumNumberOfWorkers, NumberOfIdleWorkers

Usage Job manager object

Read-only Always

Data type Double
4-42

NumberOfIdleWorkers
4NumberOfIdleWorkersPurpose Number of idle workers available to run tasks

Description The NumberOfIdleWorkers property value indicates how many workers are
currently available to the job manager for the performance of job tasks.

If the NumberOfIdleWorkers is equal to or greater than the
MinimumNumberOfWorkers of the job at the top of the queue, that job can start
running.

Characteristics

Values The value of NumberOfIdleWorkers can range from 0 up to the total number of
workers registered with the job manager.

Example Examine the number of workers available to a job manager.

jm = findResource('scheduler','type','jobmanager', ...
 'name','MyJobManager','LookupURL','JobMgrHost');
get(jm, 'NumberOfIdleWorkers')

See Also Properties
BusyWorkers, IdleWorkers, MaximumNumberOfWorkers,
MinimumNumberOfWorkers, NumberOfBusyWorkers

Usage Job manager object

Read-only Always

Data type Double
4-43

NumberOfOutputArguments
4NumberOfOutputArgumentsPurpose Number of arguments returned by task function

Description When you create a task with the createTask function, you define how many
output arguments are expected from the task function.

Characteristics

Values A matrix is considered one argument.

Example Create a task and examine its NumberOfOutputArguments property.

jm = findResource('scheduler','type','jobmanager', ...
 'name','MyJobManager','LookupURL','JobMgrHost');
j = createJob(jm);
t = createTask(j, @rand, 1, {2, 4});
get(t,'NumberOfOutputArguments')
ans =
 1

This example returns a 2-by-4 matrix, which is a single argument. The
NumberOfOutputArguments value is set by the createTask function, as the
argument immediately after the task function definition; in this case, the 1
following the @rand argument.

See Also Functions
createTask

Properties
OutputArguments

Usage Task object

Read-only While task is running

Data type Double
4-44

OutputArguments
4OutputArgumentsPurpose Data returned from execution of task

Description OutputArguments is a 1-by-N cell array in which each element corresponds to
each output argument requested from task evaluation. If the task’s
NumberOfOutputArguments property value is 0, or if the evaluation of the task
produced an error, the cell array is empty.

Characteristics

Values The forms and values of the output arguments are totally dependent on the
task function.

Example Create a job with a task and examine its result after running the job.

jm = findResource('scheduler','type','jobmanager', ...
 'name','MyJobManager','LookupURL','JobMgrHost');
j = createJob(jm);
t = createTask(j, @rand, 1, {2, 4});
submit(j)

When the job is finished, retrieve the results as a cell array.

result = get(t, 'OutputArguments')

Retrieve the results from all the tasks of a job.

alltasks = get(j, 'Tasks')
allresults = get(alltasks, 'OutputArguments')

Because each task returns a cell array, allresults is a cell array of cell arrays.

See Also Functions
createTask, getAllOutputArguments

Properties
Function, InputArguments, NumberOfOutputArguments

Usage Task object

Read-only Always

Data type Cell array
4-45

Parent
4ParentPurpose Parent object of job or task

Description A job’s Parent property indicates the job manager or scheduler object that
contains the job. A task’s Parent property indicates the job object that contains
the task.

Characteristics

See Also Properties
Jobs, Tasks

Usage Job object or task object

Read-only Always

Data type Job manager, scheduler, or job object
4-46

PathDependencies
4PathDependenciesPurpose Specify directories to add to MATLAB worker path

Description PathDependencies identifies directories to be added to the path of MATLAB
worker sessions for this job.

Characteristics

Values PathDependencies is empty by default. For a mixed-platform environment, the
strings can specify both UNIX and Windows paths; those not appropriate or not
found for a particular node generate warnings and are ignored.

Examples Set the MATLAB worker path in a mixed-platform environment to use
functions in both the central repository (/central/funcs) and the department
archive (/dept1/funcs).

sch = findResource('scheduler','name','LSF')
job1 = createJob(sch)
p = {'/central/funcs','/dept1/funcs', ...
 '\\OurDomain\central\funcs','\\OurDomain\dept1\funcs'}
set(job1, 'PathDependencies', p)

See Also Properties
ClusterMatlabRoot, FileDependencies

Usage Scheduler job object

Read-only Never

Data type Cell array of strings
4-47

PreviousJob
4PreviousJobPurpose Job whose task this worker previously ran

Description PreviousJob indicates the job whose task the worker most recently evaluated.

Characteristics

Values PreviousJob is an empty vector until the worker finishes evaluating its first
task.

See Also Properties
CurrentJob, CurrentTask, PreviousTask, Worker

Usage Worker object

Read-only Always

Data type Job object
4-48

PreviousTask
4PreviousTaskPurpose Task that this worker previously ran

Description PreviousTask indicates the task that the worker most recently evaluated.

Characteristics

Values PreviousTask is an empty vector until the worker finishes evaluating its first
task.

See Also Properties
CurrentJob, CurrentTask, PreviousJob, Worker

Usage Worker object

Read-only Always

Data type Task object
4-49

QueuedFcn
4QueuedFcnPurpose Specify M-file function to execute when job is submitted to job manager queue

Description QueuedFcn specifies the M-file function to execute when a job is submitted to a
job manager queue.

The callback will be executed in the local MATLAB session, that is, the session
that sets the property.

Characteristics

Values QueuedFcn can be set to any valid MATLAB callback value.

Example Create a job and set its QueuedFcn property, using a function handle to an
anonymous function that sends information to the display.

jm = findResource('scheduler','type','jobmanager', ...
 'name','MyJobManager','LookupURL','JobMgrHost');
j = createJob(jm, 'Name', 'Job_52a');
set(j, 'QueuedFcn', ...
 @(job,eventdata) disp([job.Name ' now queued for execution.']))
.
.
.
submit(j)
Job_52a now queued for execution.

See Also Functions
submit

Properties
FinishedFcn, RunningFcn

Usage Job object

Read-only Never

Data type Callback
4-50

RestartWorker
4RestartWorkerPurpose Specify whether to restart MATLAB workers before evaluating job tasks

Description In some cases, you might want to restart MATLAB on the workers before they
evaluate any tasks in a job. This action resets defaults, clears the workspace,
frees available memory, and so on.

Characteristics

Values Set RestartWorker to true (or logical 1) if you want the job to restart the
MATLAB session on any workers before they evaluate their first task for that
job. The workers are not reset between tasks of the same job. Set
RestartWorker to false (or logical 0) if you do not want MATLAB restarted on
any workers. When you perform get on the property, the value returned is
logical 1 or logical 0. The default value is 0, which does not restart the workers.

Example Create a job and set it so that MATLAB workers are restarted before
evaluating tasks in a job.

jm = findResource('scheduler','type','jobmanager', ...
 'name','MyJobManager','LookupURL','JobMgrHost');
j = createJob(jm);
set(j, 'RestartWorker', true)
.
.
.
submit(j)

See Also Functions
submit

Usage Job object

Read-only After job is submitted

Data type Logical
4-51

RunningFcn
4RunningFcnPurpose Specify M-file function to execute when job or task starts running

Description The callback will be executed in the local MATLAB session, that is, the session
that sets the property.

Characteristics

Values RunningFcn can be set to any valid MATLAB callback value.

Example Create a job and set its QueuedFcn property, using a function handle to an
anonymous function that sends information to the display.

jm = findResource('scheduler','type','jobmanager', ...
 'name','MyJobManager','LookupURL','JobMgrHost');
j = createJob(jm, 'Name', 'Job_52a');
set(j, 'RunningFcn', ...
 @(job,eventdata) disp([job.Name ' now running.']))
.
.
.
submit(j)
Job_52a now running.

See Also Functions
submit

Properties
FinishedFcn, QueuedFcn

Usage Task object or job object

Read-only Never

Data type Callback
4-52

StartTime
4StartTimePurpose When job or task started

Description StartTime holds a date number specifying the time when a job or task starts
running, in the format 'day mon dd hh:mm:ss tz yyyy'.

Characteristics

Values StartTime is assigned the job manager’s system time when the task or job has
started running.

Example Create and submit a job, then get its StartTime and FinishTime.

jm = findResource('scheduler','type','jobmanager', ...
 'name','MyJobManager','LookupURL','JobMgrHost');
j = createJob(jm);
t1 = createTask(j, @rand, 1, {12,12});
t2 = createTask(j, @rand, 1, {12,12});
t3 = createTask(j, @rand, 1, {12,12});
t4 = createTask(j, @rand, 1, {12,12});
submit(j)
waitForState(j, 'finished')
get(j, 'StartTime')
ans =
Mon Jun 21 10:02:17 EDT 2004
get(j, 'FinishTime')
ans =
Mon Jun 21 10:02:52 EDT 2004

See Also Functions
submit

Properties
CreateTime, FinishTime, SubmitTime

Usage Job object or task object

Read-only Always

Data type String
4-53

State
4StatePurpose Current state of task, job, job manager, or worker

Description The State property reflects the stage of an object in its life cycle, indicating
primarily whether or not it has yet been executed. The possible State values
for all Distributed Computing Toolbox objects are discussed below in the
“Values” section.

Note The State property of the task object is different than the State
property of the job object. For example, a task that is finished may be part of a
job that is running if other tasks in the job have not finished.

Characteristics

Values Task Object
For a task object, possible values for State are

• pending — Tasks that have not yet started to evaluate the task object’s
Function property are in the pending state.

• running — Task objects that are currently in the process of evaluating the
Function property are in the running state.

• finished — Task objects that have finished evaluating the task object’s
Function property are in the finished state.

• unavailable — Communication cannot be established with the job manager.

Job Object
For a job object, possible values for State are

• pending — Job objects that have not yet been submitted to a job queue are
in the pending state.

• queued — Job objects that have been submitted to a job queue but have not
yet started to run are in the queued state.

Usage Task, job, job manager, or worker object

Read-only Always

Data type String
4-54

State
• running — Job objects that are currently in the process of running are in the
running state.

• finished — Job objects that have completed running all their tasks are in
the finished state.

• failed — Job objects when using a third-party scheduler and the job could
not run because of unexpected or missing information.

• unavailable — Communication cannot be established with the job manager.

Job Manager
For a job manager, possible values for State are

• running — A started job queue will execute jobs normally.

• paused — The job queue is paused.

• unavailable — Communication cannot be established with the job manager.

When a job manager first starts up, the default value for State is running.

Worker
For a worker, possible values for State are

• running — A started job queue will execute jobs normally.

• unavailable — Communication cannot be established with the worker.

Example Create a job manager object representing a job manager service, and create a
job object; then examine each object’s State property.

jm = findResource('scheduler','type','jobmanager', ...
 'name','MyJobManager','LookupURL','JobMgrHost');
get(jm, 'State')
ans =
 running
j = createJob(jm);
get(j, 'State')
ans =
 pending

See Also Functions
createJob, createTask, findResource, pause, resume, submit
4-55

SubmitArguments
4SubmitArgumentsPurpose Specify additional arguments to use when submitting job to LSF or mpiexec
scheduler

Description SubmitArguments is simply a string that is passed via the bsub command to the
LSF scheduler at submit time, or passed to the mpiexec command if using an
mpiexec scheduler.

Characteristics

Values LSF
Useful SubmitArguments values might be '-m "machine1 machine2"' to
indicate that your LSF scheduler should use only the named machines to run
the job, or '-R "type==LINUX64"' to use only Linux 64-bit machines. Note that
by default the LSF scheduler will attempt to run your job on only nodes with
an architecture similar to the local machine’s unless you specify '-R
"type==any"'.

mpiexec
The following SubmitArguments values might be useful when using an mpiexec
scheduler. They can be combined to form a single string when separated by
spaces.

Usage LSF or mpiexec scheduler object

Read-only Never

Data type String

Value Description

-phrase MATLAB Use MATLAB as passphrase to connect with
smpd.

-noprompt Suppress prompting for any user
information.

-localonly Run only on the local computer.
4-56

SubmitArguments
For a complete list, see the command-line help for the mpiexec command:

mpiexec -help
mpiexec -help2

See Also Functions
submit

Properties
MatlabCommandToRun, MpiexecFileName

-host <hostname> Run only on the identified host.

-machinefile <filename> Run only on the nodes listed in the specified
file (one hostname per line).

Value Description
4-57

SubmitFcn
4SubmitFcnPurpose Specify function to run when job submitted to generic scheduler

Description SubmitFcn identifies the function to run when you submit a job to the generic
scheduler. The function runs in the MATLAB client. This user-defined submit
function provides certain job and task data for the MATLAB worker, and
identifies a corresponding decode function for the MATLAB worker to run.

For further information, see “Using the Submit Function” on page 2-29.

Characteristics

Values SubmitFcn can be set to any valid MATLAB callback value that uses the
user-defined submit function.

For a description of the user-defined submit function, how it is used, and its
relationship to the worker decode function, see “Using the Submit Function” on
page 2-29.

See Also Functions
submit

Properties
MatlabCommandToRun

Usage Generic scheduler object

Read-only Never

Data type String
4-58

SubmitTime
4SubmitTimePurpose When job was submitted to queue

Description SubmitTime holds a date number specifying the time when a job was submitted
to the job queue, in the format 'day mon dd hh:mm:ss tz yyyy'.

Characteristics

Values SubmitTime is assigned the job manager’s system time when the job is
submitted.

Example Create and submit a job, then get its SubmitTime.

jm = findResource('scheduler','type','jobmanager', ...
 'name','MyJobManager','LookupURL','JobMgrHost');
j = createJob(jm);
createTask(j, @rand, 1, {12,12});
submit(j)
get(j, 'SubmitTime')
ans =
Wed Jun 30 11:33:21 EDT 2004

See Also Functions
submit

Properties
CreateTime, FinishTime, StartTime

Usage Job object

Read-only Always

Data type String
4-59

Tag
4TagPurpose Specify label to associate with job object

Description You configure Tag to be a string value that uniquely identifies a job object.

Tag is particularly useful in programs that would otherwise need to define the
job object as a global variable, or pass the object as an argument between
callback routines.

You can return the job object with the findJob function by specifying the Tag
property value.

Characteristics

Values The default value is an empty string.

Example Suppose you create a job object in the job manager jm.

job1 = createJob(jm);

You can assign job1 a unique label using Tag.

set(job1,'Tag','MyFirstJob')

You can identify and access job1 using the findJob function and the Tag
property value.

job_one = findJob(jm,'Tag','MyFirstJob');

See Also Functions
findJob

Usage Job object

Read-only Never

Data type String
4-60

Tasks
4TasksPurpose Tasks contained in job object

Description The Tasks property contains an array of all the task objects in a job, whether
the tasks are pending, running, or finished. Tasks are always returned in the
order in which they were created.

Characteristics

Example Examine the Tasks property for a job object, and use the resulting array of
objects to set property values.

jm = findResource('scheduler','type','jobmanager', ...
 'name','MyJobManager','LookupURL','JobMgrHost');
j = createJob(jm);
createTask(j, ...)
.
.
.
createTask(j, ...)
alltasks = get(j, 'Tasks')
alltasks =
 distcomp.task: 10-by-1
set(alltasks, 'Timeout', 20);

The last line of code sets the Timeout property value to 20 seconds for each task
in the job.

See Also Functions
createTask, destroy, findTask

Properties
Jobs

Usage Job object

Read-only Always

Data type Array of task objects
4-61

Timeout
4TimeoutPurpose Specify time limit to complete task or job

Description Timeout holds a double value specifying the number of seconds to wait before
giving up on a task or job.

The time for timeout begins counting when the task State property value
changes from the Pending to Running, or when the job object State property
value changes from Queued to Running.

When a task times out, the behavior of the task is the same as if the task were
stopped with the cancel function, except a different message is placed in the
task object’s ErrorMessage property.

When a job times out, the behavior of the job is the same as if the job were
stopped using the cancel function, except all pending and running tasks are
treated as having timed out.

Characteristics

Values The default value for Timeout is large enough so that in practice, tasks and jobs
will never time out. You should set the value of Timeout to the number of
seconds you want to allow for completion of tasks and jobs.

Example Set a job’s Timeout value to 1 minute.

jm = findResource('scheduler','type','jobmanager', ...
 'name','MyJobManager','LookupURL','JobMgrHost');
j = createJob(jm);
set(j, 'Timeout', 60)

See Also Functions
submit

Properties
ErrorMessage, State

Usage Task object or job object

Read-only While running

Data type Double
4-62

Type
4TypePurpose Type of object

Description Type indicates the type of object.

Characteristics

Values Type is a string set to 'task', 'job', or the name of the generic scheduler.

Usage Scheduler object, scheduler job object, or scheduler task
object

Read-only Always

Data type String
4-63

UserData
4UserDataPurpose Specify data to associate with job or task object

Description You configure UserData to store data that you want to associate with an object.
The object does not use this data directly, but you can access it using the get
function or dot notation.

UserData is stored in the local MATLAB client session, not in the job manager.
So, one MATLAB client session cannot access the data stored in this property
by another MATLAB client session. Even on the same machine, if you close the
client session where UserData is set for an object, and then access the same
object from a later client session via the job manager, the original UserData is
not recovered. Likewise, commands such as

clear all
clear functions

will clear an object in the local session, permanently removing the data in the
UserData property.

Characteristics

Values The default value is an empty vector.

Example Suppose you create the job object job1.

job1 = createJob(jm);

You can associate data with job1 by storing it in UserData.

coeff.a = 1.0;
coeff.b = -1.25;
job1.UserData = coeff
get(job1,'UserData')
ans =
 a: 1
 b: -1.2500

Usage Job object or task object

Read-only Never

Data type Any type
4-64

UserName
4UserNamePurpose User who created job

Description The UserName property value is a string indicating the login name of the user
who created the job.

Characteristics

Example Examine a job to see who created it.

get(job1, 'UserName')
ans =
jsmith

Usage Job object

Read-only Always

Data type String
4-65

Worker
4WorkerPurpose Worker session that performed task

Description The Worker property value is an object representing the worker session that
evaluated the task.

Characteristics

Values Before a task is evaluated, its Worker property value is an empty vector.

Example Find out which worker evaluated a particular task.

submit(job1)
waitForState(job1,'finished')
t1 = findTask(job1,'ID',1)
t1.Worker.Name
ans =
node55_worker1

See Also Properties
Tasks

Usage Task object

Read-only Always

Data type Worker object
4-66

WorkerMachineOsType
4WorkerMachineOsTypePurpose Specify operating system of nodes on which mpiexec scheduler will start labs

Description WorkerMachineOsType specifies the operating system of the nodes that an
mpiexec scheduler will start labs on for the running of a parallel job.

Characteristics

Values The only value the property can have is 'pc' or 'unix'. The nodes of the labs
running an mpiexec job must all be the same platform. The only heterogeneous
mixing allowed in the cluster for the same mpiexec job is Macintosh with
Solaris 2.

See Also Properties
HostAddress, HostName

Usage mpiexec scheduler object

Read-only Never

Data type String
4-67

WorkerMachineOsType
4-68

Glossary
CHECKPOINT-
BASE

The name of the parameter in the mdce_def file that defines the location of the
job manager and worker checkpoint directories.

checkpoint
directory

Location where job manager checkpoint information and worker checkpoint
information is stored.

client The MATLAB session that defines and submits the job. This is the MATLAB
session in which the programmer usually develops and prototypes applications.
Also known as the MATLAB client.

client computer The computer running the MATLAB client.

cluster A collection of computers that are connected via a network and intended for a
common purpose.

computer A system with one or more processors.

coarse-grained
application

An application for which run time is significantly greater than the
communication time needed to start and stop the program. Coarse-grained
distributed applications are also called embarrassingly parallel applications.

distributed
application

The same application that runs independently on several nodes, possibly with
different input parameters. There is no communication, shared data, or
synchronization points between the nodes. Distributed applications can be
either coarse-grained or find-grained.

distributed
computing

Computing with distributed applications, running the application on several
nodes simultaneously.

distributed
computing
demos

Demonstration programs that use the Distributed Computing Toolbox, as
opposed to sequential demos.

DNS Domain Name System. A system that translates Internet domain names into
IP addresses.

head node Usually, the node of the cluster designated for running the job manager and
license manager. It is often useful to run all the nonworker related processes
on a single machine.

heterogeneous
cluster

A cluster that is not homogeneous.

homogeneous
cluster

A cluster of identical machines, in terms of both hardware and software.

job The complete large-scale operation to perform in MATLAB, composed of a set
of tasks.
Glossary-1

 Glossary

Glo
job manager The MathWorks process that queues jobs and assigns tasks to workers. A
third-party process that performs this function is called a scheduler. The
general term “scheduler” can also refer to a job manager.

job manager
checkpoint
information

Snapshot of information necessary for the job manager to recover from a
system crash or reboot.

job manager
database

The database that the job manager uses to store the information about its jobs
and tasks.

job manager
lookup process

The process that allows clients, workers, and job managers to find each other.
It starts automatically when the job manager starts.

lab When workers start, they work independently by default. They can then
connect to each other and work together as peers, and are then referred to as
labs.

LOGDIR The name of the parameter in the mdce_def file that defines the directory
where logs are stored.

MATLAB client See client.

MATLAB job
manager

See job manager.

MATLAB worker See worker.

mdce The service that has to run on all machines before they can run a job manager
or worker. This is the engine foundation process, making sure that the job
manager and worker processes that it controls are always running.

Note that the program and service name is all lower-case letters.

mdce_def file The file that defines all the defaults for the mdce processes by allowing you to
set preferences or definitions in the form of parameter values.

MPI Message Passing Interface, the means by which labs communicate with each
other while running tasks in the same job.

node A computer that is part of a cluster.

parallel
application

The same application that runs on several labs simultaneously, with
communication, shared data, or synchronization points between the labs.

random port A random unprivileged TCP port, i.e., a random TCP port above 1024.
ssary-2

Glossary
register a
worker

The action that happens when both worker and job manager are started and
the worker contacts job manager.

scheduler The process, either third-party or the MathWorks job manager, that queues
jobs and assigns tasks to workers.

task One segment of a job to be evaluated by a worker.

worker The MATLAB process that performs the task computations. Also known as the
MATLAB worker or worker process.

worker
checkpoint
information

Files required by the worker during the execution of tasks.
Glossary-3

 Glossary

Glo
ssary-4

Index
B
BusyWorkers property 4-8

C
cancel function 3-7
CaptureCommandWindowOutput property 4-9
clear function 3-9
ClusterMatlabRoot property 4-10
ClusterName property 4-11
CommandWindowOutput property 4-12
Configuration property 4-13
configurations 2-44
createJob function 3-10
createParallelJob function 3-12
createTask function 3-14
CreateTime property 4-14
current working directory

MATLAB worker 2-48
CurrentJob property 4-15
CurrentTask property 4-16

D
DataLocation property 4-17
dctconfig function 3-16
demote function 3-18
destroy function 3-19
dfeval function 3-20
dfevalasync function 3-23

E
EnvironmentSetMethod property 4-18
ErrorIdentifier property 4-19
ErrorMessage property 4-20
F
FileDependencies property 4-21
files

sharing 2-13
using an LSF scheduler 2-23

findJob function 3-25
findResource function 3-27
findTask function 3-30
FinishedFcn property 4-23
FinishTime property 4-25
Function property 4-26
functions

cancel 3-7
clear 3-9
createJob 3-10
createParallelJob 3-12
createTask 3-14
dctconfig 3-16
demote 3-18
destroy 3-19
dfeval 3-20
dfevalasync 3-23
findJob 3-25
findResource 3-27
findTask 3-30
get 3-32
getAllOutputArguments 3-34
getCurrentJob 3-36
getCurrentJobmanager 3-37
getCurrentTask 3-38
getCurrentWorker 3-39
getDebugLog 3-40
gop 3-41
help 3-42
inspect 3-43
jobStartup 3-44
Index-1

Index

Ind
functions (continued)
labBarrier 3-45
labBroadcast 3-46
labindex 3-48
labProbe 3-49
labReceive 3-50
labSend 3-51
length 3-52
methods 3-53
mpiLibConf 3-54
mpiSettings 3-55
numlabs 3-57
pause 3-58
promote 3-59
resume 3-60
set 3-61
size 3-64
submit 3-65
taskFinish 3-66
taskStartup 3-67
waitForState 3-68

G
get function 3-32
getAllOutputArguments function 3-34
getCurrentJob function 3-36
getCurrentJobmanager function 3-37
getCurrentTask function 3-38
getCurrentWorker function 3-39
getDebugLogp function 3-40
gop function 3-41
ex-2
H
HasSharedFilesystem property 4-27
help

command-line 1-12
help function 3-42
HostAddress property 4-28
HostName property 4-29

I
ID property 4-30
IdleWorkers property 4-31
InputArguments property 4-32
inspect function 3-43

J
job

creating
example 2-11

creating on generic scheduler
example 2-34

creating on LSF scheduler
example 2-20

life cycle 2-3
submitting to generic scheduler queue 2-35
submitting to LSF scheduler queue 2-22
submitting to queue 2-12

job manager
finding

example 2-10
JobData property 4-33
Jobs property 4-34
jobStartup function 3-44

Index
L
labBarrier function 3-45
labBroadcast function 3-46
labindex function 3-48
labProbe function 3-49
labReceive function 3-50
labSend function 3-51
length function 3-52
LSF scheduler 2-19

M
MasterName property 4-35
MatlabCommandToRun property 4-36
MaximumNumberOfWorkers property 4-37
methods function 3-53
MinimumNumberOfWorkers property 4-38
MpiexecFileName property 4-39
mpiLibConf function 3-54
mpiSettings function 3-55

N
Name property 4-40
NumberOfBusyWorkers property 4-42
NumberOfIdleWorkers property 4-43
NumberOfOutputArguments property 4-44
numlabs function 3-57

O
objects 1-7
OutputArguments property 4-45

P
parallel jobs 2-37

job manager 2-38
mpiexec scheduler 2-40

Parent property 4-46
PathDependencies property 4-47
pause function 3-58
platforms

supported 1-7
PreviousJob property 4-48
PreviousTask property 4-49
programming

basic session 2-9
guidelines 2-2
tips 2-48
with an LSF scheduler

basic session 2-19
promote function 3-59
properties

BusyWorkers 4-8
CaptureCommandWindowOutput 4-9
ClusterMatlabRoot 4-10
ClusterName 4-11
CommandWindowOutput 4-12
Configuration 4-13
CreateTime 4-14
CurrentJob 4-15
CurrentTask 4-16
DataLocation 4-17
EnvironmentSetMethod 4-18
ErrorIdentifier 4-19
ErrorMessage 4-20
FileDependencies 4-21
FinishedFcn 4-23
FinishTime 4-25
Function 4-26
HasSharedFilesystem 4-27
Index-3

Index

Ind
properties (continued)
HostAddress 4-28
HostName 4-29
ID 4-30
IdleWorkers 4-31
InputArguments 4-32
JobData 4-33
Jobs 4-34
MasterName 4-35
MatlabCommandToRun 4-36
MaximumNumberOfWorkers 4-37
MinimumNumberOfWorkers 4-38
MpiexecFileName 4-39
Name 4-40
NumberOfBusyWorkers 4-42
NumberOfIdleWorkers 4-43
NumberOfOutputArguments 4-44
OutputArguments 4-45
Parent 4-46
PathDependencies 4-47
PreviousJob 4-48
PreviousTask 4-49
QueuedFcn 4-50
RestartWorker 4-51
RunningFcn 4-52
StartTime 4-53
State 4-54
SubmitArguments 4-56
SubmitFcn 4-58
SubmitTime 4-59
Tag 4-60
Tasks 4-61
Timeout 4-62
Type 4-63
ex-4
properties (continued)
UserData 4-64
UserName 4-65
Worker 4-66
WorkerMachineOsType 4-67

Q
QueuedFcn property 4-50

R
RestartWorker property 4-51
results

retrieving 2-13
retrieving from job on generic scheduler 2-36
retrieving from job on LSF scheduler 2-23

resume function 3-60
RunningFcn property 4-52

S
scheduler

generic 2-27
LSF 2-19

finding, example 2-19
set function 3-61
size function 3-64
StartTime property 4-53
State property 4-54
submit function 3-65
SubmitArguments property 4-56
SubmitFcn property 4-58
SubmitTime property 4-59

Index
T
Tag property 4-60
task

creating
example 2-12

creating on generic scheduler
example 2-35

creating on LSF scheduler
example 2-22

taskFinish function 3-66
Tasks property 4-61
taskStartup function 3-67
Timeout property 4-62
troubleshooting

programs 2-51
Type property 4-63

U
user configurations 2-44
UserData property 4-64
UserName property 4-65

W
waitForState function 3-68
Worker property 4-66
WorkerMachineOsType property 4-67
Index-5

Index

Ind
ex-6

	Getting Started
	What Are the Distributed Computing Products?
	Determining Product Installation and Versions

	Toolbox and Engine Components
	Job Managers, Workers, and Clients
	Third-Party Schedulers
	Components on Mixed Platforms or Heterogeneous Clusters
	The MATLAB Distributed Computing Engine Service
	Components Represented in the Client

	Using the Distributed Computing Toolbox
	Overview
	Example: Programming a Basic Job with a Job Manager
	Example: Evaluating a Basic Function
	Example: Programming a Basic Job with an LSF Scheduler

	Getting Help
	Command-Line Help
	Help Browser

	Programming Distributed and Parallel Applications
	Program Development Guidelines
	Life Cycle of a Job
	Evaluating Functions in a Cluster
	Evaluating Functions Synchronously
	Evaluating Functions Asynchronously

	Programming Distributed Jobs
	Using a Job Manager
	Using an LSF Scheduler
	Using a Generic Scheduler

	Programming Parallel Jobs
	Using a Job Manager
	Using an mpiexec Scheduler
	Further Notes on Parallel Jobs

	Programming with User Configurations
	Defining Configurations
	Applying Configurations in Client Code

	Programming Tips and Notes
	Saving or Sending Objects
	Current Working Directory of MATLAB Worker
	Using clear functions
	Running Tasks That Call Simulink
	Using the pause Function
	Transmitting Large Amounts of Data
	Interrupting a Job
	IPv6 on Macintosh
	Speeding Up a Job

	Troubleshooting and Debugging
	Object Data Size Limitations
	File Access and Permissions
	No Results from Job
	Connection Problems Between Client and Job Manager

	Function Reference
	Functions — By Category
	General Toolbox Functions
	Job Manager Functions
	Scheduler Functions
	Job Functions
	Task Functions
	Toolbox Functions Used in Parallel Jobs
	Toolbox Functions Used in MATLAB Workers

	Functions — Alphabetical List
	cancel
	clear
	createJob
	createParallelJob
	createTask
	dctconfig
	demote
	destroy
	dfeval
	dfevalasync
	findJob
	findResource
	findTask
	get
	getAllOutputArguments
	getCurrentJob
	getCurrentJobmanager
	getCurrentTask
	getCurrentWorker
	getDebugLog
	gop
	help
	inspect
	jobStartup
	labBarrier
	labBroadcast
	labindex
	labProbe
	labReceive
	labSend
	length
	methods
	mpiLibConf
	mpiSettings
	numlabs
	pause
	promote
	resume
	set
	size
	submit
	taskFinish
	taskStartup
	waitForState

	Property Reference
	Properties — By Category
	Job Manager Properties
	Scheduler Properties
	Job Properties
	Task Properties
	Worker Properties

	Properties — Alphabetical List
	BusyWorkers
	CaptureCommandWindowOutput
	ClusterMatlabRoot
	ClusterName
	CommandWindowOutput
	Configuration
	CreateTime
	CurrentJob
	CurrentTask
	DataLocation
	EnvironmentSetMethod
	ErrorIdentifier
	ErrorMessage
	FileDependencies
	FinishedFcn
	FinishTime
	Function
	HasSharedFilesystem
	HostAddress
	HostName
	ID
	IdleWorkers
	InputArguments
	JobData
	Jobs
	MasterName
	MatlabCommandToRun
	MaximumNumberOfWorkers
	MinimumNumberOfWorkers
	MpiexecFileName
	Name
	NumberOfBusyWorkers
	NumberOfIdleWorkers
	NumberOfOutputArguments
	OutputArguments
	Parent
	PathDependencies
	PreviousJob
	PreviousTask
	QueuedFcn
	RestartWorker
	RunningFcn
	StartTime
	State
	SubmitArguments
	SubmitFcn
	SubmitTime
	Tag
	Tasks
	Timeout
	Type
	UserData
	UserName
	Worker
	WorkerMachineOsType

	Glossary
	Index

